update '==>' to '=>'
parent
fea71947c7
commit
3a4e390c77
|
@ -101,7 +101,7 @@ def main():
|
|||
start_time = time.time()
|
||||
ranklogger = RankLogger(args.source_names, args.target_names)
|
||||
train_time = 0
|
||||
print("==> Start training")
|
||||
print("=> Start training")
|
||||
|
||||
if args.fixbase_epoch > 0:
|
||||
print("Train {} for {} epochs while keeping other layers frozen".format(args.open_layers, args.fixbase_epoch))
|
||||
|
@ -123,7 +123,7 @@ def main():
|
|||
scheduler.step()
|
||||
|
||||
if (epoch + 1) > args.start_eval and args.eval_freq > 0 and (epoch + 1) % args.eval_freq == 0 or (epoch + 1) == args.max_epoch:
|
||||
print("==> Test")
|
||||
print("=> Test")
|
||||
|
||||
for name in args.target_names:
|
||||
print("Evaluating {} ...".format(name))
|
||||
|
@ -236,7 +236,7 @@ def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20], retur
|
|||
|
||||
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
|
||||
|
||||
print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch_size))
|
||||
print("=> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch_size))
|
||||
|
||||
m, n = qf.size(0), gf.size(0)
|
||||
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
|
||||
|
|
|
@ -104,7 +104,7 @@ def main():
|
|||
start_time = time.time()
|
||||
ranklogger = RankLogger(args.source_names, args.target_names)
|
||||
train_time = 0
|
||||
print("==> Start training")
|
||||
print("=> Start training")
|
||||
|
||||
if args.fixbase_epoch > 0:
|
||||
print("Train {} for {} epochs while keeping other layers frozen".format(args.open_layers, args.fixbase_epoch))
|
||||
|
@ -126,7 +126,7 @@ def main():
|
|||
scheduler.step()
|
||||
|
||||
if (epoch + 1) > args.start_eval and args.eval_freq > 0 and (epoch + 1) % args.eval_freq == 0 or (epoch + 1) == args.max_epoch:
|
||||
print("==> Test")
|
||||
print("=> Test")
|
||||
|
||||
for name in args.target_names:
|
||||
print("Evaluating {} ...".format(name))
|
||||
|
@ -253,7 +253,7 @@ def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20], retur
|
|||
|
||||
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
|
||||
|
||||
print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch_size))
|
||||
print("=> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch_size))
|
||||
|
||||
m, n = qf.size(0), gf.size(0)
|
||||
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
|
||||
|
|
|
@ -102,7 +102,7 @@ def main():
|
|||
start_time = time.time()
|
||||
ranklogger = RankLogger(args.source_names, args.target_names)
|
||||
train_time = 0
|
||||
print("==> Start training")
|
||||
print("=> Start training")
|
||||
|
||||
if args.fixbase_epoch > 0:
|
||||
print("Train {} for {} epochs while keeping other layers frozen".format(args.open_layers, args.fixbase_epoch))
|
||||
|
@ -124,7 +124,7 @@ def main():
|
|||
scheduler.step()
|
||||
|
||||
if (epoch + 1) > args.start_eval and args.eval_freq > 0 and (epoch + 1) % args.eval_freq == 0 or (epoch + 1) == args.max_epoch:
|
||||
print("==> Test")
|
||||
print("=> Test")
|
||||
|
||||
for name in args.target_names:
|
||||
print("Evaluating {} ...".format(name))
|
||||
|
@ -250,7 +250,7 @@ def test(model, queryloader, galleryloader, pool, use_gpu, ranks=[1, 5, 10, 20],
|
|||
|
||||
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
|
||||
|
||||
print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch_size * args.seq_len))
|
||||
print("=> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch_size * args.seq_len))
|
||||
|
||||
m, n = qf.size(0), gf.size(0)
|
||||
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
|
||||
|
|
|
@ -106,7 +106,7 @@ def main():
|
|||
start_time = time.time()
|
||||
ranklogger = RankLogger(args.source_names, args.target_names)
|
||||
train_time = 0
|
||||
print("==> Start training")
|
||||
print("=> Start training")
|
||||
|
||||
if args.fixbase_epoch > 0:
|
||||
print("Train {} for {} epochs while keeping other layers frozen".format(args.open_layers, args.fixbase_epoch))
|
||||
|
@ -128,7 +128,7 @@ def main():
|
|||
scheduler.step()
|
||||
|
||||
if (epoch + 1) > args.start_eval and args.eval_freq > 0 and (epoch + 1) % args.eval_freq == 0 or (epoch + 1) == args.max_epoch:
|
||||
print("==> Test")
|
||||
print("=> Test")
|
||||
|
||||
for name in args.target_names:
|
||||
print("Evaluating {} ...".format(name))
|
||||
|
@ -267,7 +267,7 @@ def test(model, queryloader, galleryloader, pool, use_gpu, ranks=[1, 5, 10, 20],
|
|||
|
||||
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
|
||||
|
||||
print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch_size * args.seq_len))
|
||||
print("=> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch_size * args.seq_len))
|
||||
|
||||
m, n = qf.size(0), gf.size(0)
|
||||
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
|
||||
|
|
Loading…
Reference in New Issue