build new classifier; add squeezenet1_0_fc512

pull/119/head
KaiyangZhou 2018-10-27 22:49:53 +01:00
parent ee5bcee63f
commit 3ddf9ce699
2 changed files with 86 additions and 24 deletions

View File

@ -40,6 +40,7 @@ __model_factory = {
'mobilenetv2': MobileNetV2,
'shufflenet': ShuffleNet,
'squeezenet1_0': squeezenet1_0,
'squeezenet1_0_fc512': squeezenet1_0_fc512,
'squeezenet1_1': squeezenet1_1,
# reid-specific models
'mudeep': MuDeep,

View File

@ -13,7 +13,7 @@ import torchvision
import torch.utils.model_zoo as model_zoo
__all__ = ['squeezenet1_0', 'squeezenet1_1']
__all__ = ['squeezenet1_0', 'squeezenet1_1', 'squeezenet1_0_fc512']
model_urls = {
@ -53,13 +53,15 @@ class SqueezeNet(nn.Module):
Iandola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and< 0.5 MB model size. arXiv:1602.07360.
"""
def __init__(self, num_classes, loss, version=1.0, **kwargs):
def __init__(self, num_classes, loss, version=1.0, fc_dims=None, dropout_p=None, **kwargs):
super(SqueezeNet, self).__init__()
self.loss = loss
self.feature_dim = 512
if version not in [1.0, 1.1]:
raise ValueError("Unsupported SqueezeNet version {version}:"
"1.0 or 1.1 expected".format(version=version))
self.num_classes = num_classes
if version == 1.0:
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=7, stride=2),
@ -92,40 +94,74 @@ class SqueezeNet(nn.Module):
Fire(384, 64, 256, 256),
Fire(512, 64, 256, 256),
)
# Final convolution is initialized differently form the rest
final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
final_conv,
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d(1)
)
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = self._construct_fc_layer(fc_dims, 512, dropout_p)
self.classifier = nn.Linear(self.feature_dim, num_classes)
self._init_params()
def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
"""
Construct fully connected layer
- fc_dims (list or tuple): dimensions of fc layers, if None,
no fc layers are constructed
- input_dim (int): input dimension
- dropout_p (float): dropout probability, if None, dropout is unused
"""
if fc_dims is None:
self.feature_dim = input_dim
return None
assert isinstance(fc_dims, (list, tuple)), "fc_dims must be either list or tuple, but got {}".format(type(fc_dims))
layers = []
for dim in fc_dims:
layers.append(nn.Linear(input_dim, dim))
layers.append(nn.BatchNorm1d(dim))
layers.append(nn.ReLU(inplace=True))
if dropout_p is not None:
layers.append(nn.Dropout(p=dropout_p))
input_dim = dim
self.feature_dim = fc_dims[-1]
return nn.Sequential(*layers)
def _init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m is final_conv:
init.normal_(m.weight, mean=0.0, std=0.01)
else:
init.kaiming_uniform_(m.weight)
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
init.constant_(m.bias, 0)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
f = self.features(x)
v = self.global_avgpool(f)
v = v.view(v.size(0), -1)
if self.fc is not None:
v = self.fc(v)
if not self.training:
v = F.adaptive_avg_pool2d(f, 1)
v = v.view(v.size(0), -1)
return v
y = self.classifier(f)
y = y.view(y.size(0), self.num_classes)
y = self.classifier(v)
if self.loss == {'xent'}:
return y
elif self.loss == {'xent', 'htri'}:
v = F.adaptive_avg_pool2d(f, 1)
v = v.view(v.size(0), -1)
return y, v
else:
raise KeyError("Unsupported loss: {}".format(self.loss))
@ -145,14 +181,39 @@ def init_pretrained_weights(model, model_url):
def squeezenet1_0(num_classes, loss, pretrained=True, **kwargs):
model = SqueezeNet(num_classes, loss, version=1.0, **kwargs)
model = SqueezeNet(
num_classes, loss,
version=1.0,
fc_dims=None,
dropout_p=None,
**kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['squeezenet1_0'])
return model
def squeezenet1_0_fc512(num_classes, loss, pretrained=True, **kwargs):
model = SqueezeNet(
num_classes, loss,
version=1.0,
fc_dims=[512],
dropout_p=None,
**kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['squeezenet1_0'])
return model
def squeezenet1_1(num_classes, loss, pretrained=True, **kwargs):
model = SqueezeNet(num_classes, loss, version=1.1, **kwargs)
model = SqueezeNet(
num_classes, loss,
version=1.1,
fc_dims=None,
dropout_p=None,
**kwargs
)
if pretrained:
init_pretrained_weights(model, model_urls['squeezenet1_1'])
return model