add viper & grid
parent
8b53814783
commit
536ed56e88
305
data_manager.py
305
data_manager.py
|
@ -530,6 +530,303 @@ class MSMT17(object):
|
|||
assert idx == pid, "See code comment for explanation"
|
||||
return dataset, num_pids, num_imgs
|
||||
|
||||
class VIPeR(object):
|
||||
"""
|
||||
VIPeR
|
||||
|
||||
Reference:
|
||||
Gray et al. Evaluating appearance models for recognition, reacquisition, and tracking. PETS 2007.
|
||||
|
||||
URL: https://vision.soe.ucsc.edu/node/178
|
||||
|
||||
Dataset statistics:
|
||||
# identities: 632
|
||||
# images: 632 x 2 = 1264
|
||||
# cameras: 2
|
||||
"""
|
||||
dataset_dir = 'viper'
|
||||
|
||||
def __init__(self, root='data', split_id=0, **kwargs):
|
||||
self.dataset_dir = osp.join(root, self.dataset_dir)
|
||||
self.dataset_url = 'http://users.soe.ucsc.edu/~manduchi/VIPeR.v1.0.zip'
|
||||
self.cam_a_path = osp.join(self.dataset_dir, 'VIPeR', 'cam_a')
|
||||
self.cam_b_path = osp.join(self.dataset_dir, 'VIPeR', 'cam_b')
|
||||
self.split_path = osp.join(self.dataset_dir, 'splits.json')
|
||||
|
||||
self._download_data()
|
||||
self._check_before_run()
|
||||
|
||||
self._prepare_split()
|
||||
splits = read_json(self.split_path)
|
||||
if split_id >= len(splits):
|
||||
raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1))
|
||||
split = splits[split_id]
|
||||
|
||||
train = split['train']
|
||||
query = split['query'] # query and gallery share the same images
|
||||
gallery = split['gallery']
|
||||
|
||||
train = [tuple(item) for item in train]
|
||||
query = [tuple(item) for item in query]
|
||||
gallery = [tuple(item) for item in gallery]
|
||||
|
||||
num_train_pids = split['num_train_pids']
|
||||
num_query_pids = split['num_query_pids']
|
||||
num_gallery_pids = split['num_gallery_pids']
|
||||
|
||||
num_train_imgs = len(train)
|
||||
num_query_imgs = len(query)
|
||||
num_gallery_imgs = len(gallery)
|
||||
|
||||
num_total_pids = num_train_pids + num_query_pids
|
||||
num_total_imgs = num_train_imgs + num_query_imgs
|
||||
|
||||
print("=> VIPeR loaded")
|
||||
print("Dataset statistics:")
|
||||
print(" ------------------------------")
|
||||
print(" subset | # ids | # images")
|
||||
print(" ------------------------------")
|
||||
print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_imgs))
|
||||
print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_imgs))
|
||||
print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs))
|
||||
print(" ------------------------------")
|
||||
print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_imgs))
|
||||
print(" ------------------------------")
|
||||
|
||||
self.train = train
|
||||
self.query = query
|
||||
self.gallery = gallery
|
||||
|
||||
self.num_train_pids = num_train_pids
|
||||
self.num_query_pids = num_query_pids
|
||||
self.num_gallery_pids = num_gallery_pids
|
||||
|
||||
def _download_data(self):
|
||||
if osp.exists(self.dataset_dir):
|
||||
print("This dataset has been downloaded.")
|
||||
return
|
||||
|
||||
print("Creating directory {}".format(self.dataset_dir))
|
||||
mkdir_if_missing(self.dataset_dir)
|
||||
fpath = osp.join(self.dataset_dir, osp.basename(self.dataset_url))
|
||||
|
||||
print("Downloading VIPeR dataset")
|
||||
urllib.urlretrieve(self.dataset_url, fpath)
|
||||
|
||||
print("Extracting files")
|
||||
zip_ref = zipfile.ZipFile(fpath, 'r')
|
||||
zip_ref.extractall(self.dataset_dir)
|
||||
zip_ref.close()
|
||||
|
||||
def _check_before_run(self):
|
||||
"""Check if all files are available before going deeper"""
|
||||
if not osp.exists(self.dataset_dir):
|
||||
raise RuntimeError("'{}' is not available".format(self.dataset_dir))
|
||||
if not osp.exists(self.cam_a_path):
|
||||
raise RuntimeError("'{}' is not available".format(self.cam_a_path))
|
||||
if not osp.exists(self.cam_b_path):
|
||||
raise RuntimeError("'{}' is not available".format(self.cam_b_path))
|
||||
|
||||
def _prepare_split(self):
|
||||
if not osp.exists(self.split_path):
|
||||
print("Creating 10 random splits")
|
||||
|
||||
cam_a_imgs = sorted(glob.glob(osp.join(self.cam_a_path, '*.bmp')))
|
||||
cam_b_imgs = sorted(glob.glob(osp.join(self.cam_b_path, '*.bmp')))
|
||||
assert len(cam_a_imgs) == len(cam_b_imgs)
|
||||
num_pids = len(cam_a_imgs)
|
||||
print("Number of identities: {}".format(num_pids))
|
||||
num_train_pids = num_pids // 2
|
||||
|
||||
splits = []
|
||||
for _ in range(1):
|
||||
order = np.arange(num_pids)
|
||||
np.random.shuffle(order)
|
||||
train_idxs = order[:num_train_pids]
|
||||
test_idxs = order[num_train_pids:]
|
||||
assert not bool(set(train_idxs) & set(test_idxs)), "Error: train and test overlap"
|
||||
|
||||
train = []
|
||||
for pid, idx in enumerate(train_idxs):
|
||||
cam_a_img = cam_a_imgs[idx]
|
||||
cam_b_img = cam_b_imgs[idx]
|
||||
train.append((cam_a_img, pid, 0))
|
||||
train.append((cam_b_img, pid, 1))
|
||||
|
||||
test = []
|
||||
for pid, idx in enumerate(test_idxs):
|
||||
cam_a_img = cam_a_imgs[idx]
|
||||
cam_b_img = cam_b_imgs[idx]
|
||||
test.append((cam_a_img, pid, 0))
|
||||
test.append((cam_b_img, pid, 1))
|
||||
|
||||
split = {'train': train, 'query': test, 'gallery': test,
|
||||
'num_train_pids': num_train_pids,
|
||||
'num_query_pids': num_pids - num_train_pids,
|
||||
'num_gallery_pids': num_pids - num_train_pids
|
||||
}
|
||||
splits.append(split)
|
||||
|
||||
print("Totally {} splits are created".format(len(splits)))
|
||||
write_json(splits, self.split_path)
|
||||
print("Split file saved to {}".format(self.split_path))
|
||||
|
||||
print("Splits created")
|
||||
|
||||
class GRID(object):
|
||||
"""
|
||||
GRID
|
||||
|
||||
Reference:
|
||||
Loy et al. Multi-camera activity correlation analysis. CVPR 2009.
|
||||
|
||||
URL: http://personal.ie.cuhk.edu.hk/~ccloy/downloads_qmul_underground_reid.html
|
||||
|
||||
Dataset statistics:
|
||||
# identities: 250
|
||||
# images: 1275
|
||||
# cameras: 8
|
||||
"""
|
||||
dataset_dir = 'grid'
|
||||
|
||||
def __init__(self, root='data', split_id=0, **kwargs):
|
||||
self.dataset_dir = osp.join(root, self.dataset_dir)
|
||||
self.dataset_url = 'http://personal.ie.cuhk.edu.hk/~ccloy/files/datasets/underground_reid.zip'
|
||||
self.probe_path = osp.join(self.dataset_dir, 'underground_reid', 'probe')
|
||||
self.gallery_path = osp.join(self.dataset_dir, 'underground_reid', 'gallery')
|
||||
self.split_mat_path = osp.join(self.dataset_dir, 'underground_reid', 'features_and_partitions.mat')
|
||||
self.split_path = osp.join(self.dataset_dir, 'splits.json')
|
||||
|
||||
self._download_data()
|
||||
self._check_before_run()
|
||||
|
||||
self._prepare_split()
|
||||
splits = read_json(self.split_path)
|
||||
if split_id >= len(splits):
|
||||
raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1))
|
||||
split = splits[split_id]
|
||||
|
||||
train = split['train']
|
||||
query = split['query']
|
||||
gallery = split['gallery']
|
||||
|
||||
train = [tuple(item) for item in train]
|
||||
query = [tuple(item) for item in query]
|
||||
gallery = [tuple(item) for item in gallery]
|
||||
|
||||
num_train_pids = split['num_train_pids']
|
||||
num_query_pids = split['num_query_pids']
|
||||
num_gallery_pids = split['num_gallery_pids']
|
||||
|
||||
num_train_imgs = len(train)
|
||||
num_query_imgs = len(query)
|
||||
num_gallery_imgs = len(gallery)
|
||||
|
||||
num_total_pids = num_train_pids + num_gallery_pids
|
||||
num_total_imgs = num_train_imgs + num_query_imgs + num_gallery_imgs
|
||||
|
||||
print("=> GRID loaded")
|
||||
print("Dataset statistics:")
|
||||
print(" ------------------------------")
|
||||
print(" subset | # ids | # images")
|
||||
print(" ------------------------------")
|
||||
print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_imgs))
|
||||
print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_imgs))
|
||||
print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs))
|
||||
print(" ------------------------------")
|
||||
print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_imgs))
|
||||
print(" ------------------------------")
|
||||
|
||||
self.train = train
|
||||
self.query = query
|
||||
self.gallery = gallery
|
||||
|
||||
self.num_train_pids = num_train_pids
|
||||
self.num_query_pids = num_query_pids
|
||||
self.num_gallery_pids = num_gallery_pids
|
||||
|
||||
def _check_before_run(self):
|
||||
"""Check if all files are available before going deeper"""
|
||||
if not osp.exists(self.dataset_dir):
|
||||
raise RuntimeError("'{}' is not available".format(self.dataset_dir))
|
||||
if not osp.exists(self.probe_path):
|
||||
raise RuntimeError("'{}' is not available".format(self.probe_path))
|
||||
if not osp.exists(self.gallery_path):
|
||||
raise RuntimeError("'{}' is not available".format(self.gallery_path))
|
||||
if not osp.exists(self.split_mat_path):
|
||||
raise RuntimeError("'{}' is not available".format(self.split_mat_path))
|
||||
|
||||
def _download_data(self):
|
||||
if osp.exists(self.dataset_dir):
|
||||
print("This dataset has been downloaded.")
|
||||
return
|
||||
|
||||
print("Creating directory {}".format(self.dataset_dir))
|
||||
mkdir_if_missing(self.dataset_dir)
|
||||
fpath = osp.join(self.dataset_dir, osp.basename(self.dataset_url))
|
||||
|
||||
print("Downloading GRID dataset")
|
||||
urllib.urlretrieve(self.dataset_url, fpath)
|
||||
|
||||
print("Extracting files")
|
||||
zip_ref = zipfile.ZipFile(fpath, 'r')
|
||||
zip_ref.extractall(self.dataset_dir)
|
||||
zip_ref.close()
|
||||
|
||||
def _prepare_split(self):
|
||||
if not osp.exists(self.split_path):
|
||||
print("Creating 10 random splits")
|
||||
split_mat = loadmat(self.split_mat_path)
|
||||
trainIdxAll = split_mat['trainIdxAll'][0] # length = 10
|
||||
probe_img_paths = sorted(glob.glob(osp.join(self.probe_path, '*.jpeg')))
|
||||
gallery_img_paths = sorted(glob.glob(osp.join(self.gallery_path, '*.jpeg')))
|
||||
|
||||
splits = []
|
||||
for split_idx in range(10):
|
||||
train_idxs = trainIdxAll[split_idx][0][0][2][0].tolist()
|
||||
assert len(train_idxs) == 125
|
||||
idx2pid = {idx: pid for pid, idx in enumerate(train_idxs)}
|
||||
|
||||
train, query, gallery = [], [], []
|
||||
|
||||
# processing probe folder
|
||||
for img_path in probe_img_paths:
|
||||
img_name = osp.basename(img_path)
|
||||
img_idx = int(img_name.split('_')[0])
|
||||
camid = int(img_name.split('_')[1])
|
||||
if img_idx in train_idxs:
|
||||
# add to train data
|
||||
train.append((img_path, idx2pid[img_idx], camid))
|
||||
else:
|
||||
# add to query data
|
||||
query.append((img_path, img_idx, camid))
|
||||
|
||||
# process gallery folder
|
||||
for img_path in gallery_img_paths:
|
||||
img_name = osp.basename(img_path)
|
||||
img_idx = int(img_name.split('_')[0])
|
||||
camid = int(img_name.split('_')[1])
|
||||
if img_idx in train_idxs:
|
||||
# add to train data
|
||||
train.append((img_path, idx2pid[img_idx], camid))
|
||||
else:
|
||||
# add to gallery data
|
||||
gallery.append((img_path, img_idx, camid))
|
||||
|
||||
split = {'train': train, 'query': query, 'gallery': gallery,
|
||||
'num_train_pids': 125,
|
||||
'num_query_pids': 125,
|
||||
'num_gallery_pids': 900,
|
||||
}
|
||||
splits.append(split)
|
||||
|
||||
print("Totally {} splits are created".format(len(splits)))
|
||||
write_json(splits, self.split_path)
|
||||
print("Split file saved to {}".format(self.split_path))
|
||||
|
||||
print("Splits created")
|
||||
|
||||
|
||||
"""Video ReID"""
|
||||
|
||||
class Mars(object):
|
||||
|
@ -750,8 +1047,7 @@ class iLIDSVID(object):
|
|||
fpath = osp.join(self.dataset_dir, osp.basename(self.dataset_url))
|
||||
|
||||
print("Downloading iLIDS-VID dataset")
|
||||
url_opener = urllib.URLopener()
|
||||
url_opener.retrieve(self.dataset_url, fpath)
|
||||
urllib.urlretrieve(self.dataset_url, fpath)
|
||||
|
||||
print("Extracting files")
|
||||
tar = tarfile.open(fpath)
|
||||
|
@ -1079,6 +1375,8 @@ __img_factory = {
|
|||
'cuhk03': CUHK03,
|
||||
'dukemtmcreid': DukeMTMCreID,
|
||||
'msmt17': MSMT17,
|
||||
'viper': VIPeR,
|
||||
'grid': GRID,
|
||||
}
|
||||
|
||||
__vid_factory = {
|
||||
|
@ -1100,3 +1398,6 @@ def init_vid_dataset(name, **kwargs):
|
|||
if name not in __vid_factory.keys():
|
||||
raise KeyError("Invalid dataset, got '{}', but expected to be one of {}".format(name, __vid_factory.keys()))
|
||||
return __vid_factory[name](**kwargs)
|
||||
|
||||
if __name__ == '__main__':
|
||||
dataset = GRID()
|
||||
|
|
Loading…
Reference in New Issue