rm center loss & ring loss
parent
5854a156b6
commit
5cd0776eb5
|
@ -4,8 +4,6 @@ from __future__ import print_function
|
|||
|
||||
from .cross_entropy_loss import CrossEntropyLoss
|
||||
from .hard_mine_triplet_loss import TripletLoss
|
||||
from .center_loss import CenterLoss
|
||||
from .ring_loss import RingLoss
|
||||
|
||||
|
||||
def DeepSupervision(criterion, xs, y):
|
||||
|
|
|
@ -1,56 +0,0 @@
|
|||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class CenterLoss(nn.Module):
|
||||
"""Center loss.
|
||||
|
||||
Reference:
|
||||
Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
|
||||
|
||||
Args:
|
||||
- num_classes (int): number of classes.
|
||||
- feat_dim (int): feature dimension.
|
||||
"""
|
||||
def __init__(self, num_classes=10, feat_dim=2, use_gpu=True):
|
||||
super(CenterLoss, self).__init__()
|
||||
warnings.warn('This method is deprecated')
|
||||
self.num_classes = num_classes
|
||||
self.feat_dim = feat_dim
|
||||
self.use_gpu = use_gpu
|
||||
|
||||
if self.use_gpu:
|
||||
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim).cuda())
|
||||
else:
|
||||
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim))
|
||||
|
||||
def forward(self, x, labels):
|
||||
"""
|
||||
Args:
|
||||
- x: feature matrix with shape (batch_size, feat_dim).
|
||||
- labels: ground truth labels with shape (num_classes).
|
||||
"""
|
||||
batch_size = x.size(0)
|
||||
distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_classes) + \
|
||||
torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_classes, batch_size).t()
|
||||
distmat.addmm_(1, -2, x, self.centers.t())
|
||||
|
||||
classes = torch.arange(self.num_classes).long()
|
||||
if self.use_gpu: classes = classes.cuda()
|
||||
labels = labels.unsqueeze(1).expand(batch_size, self.num_classes)
|
||||
mask = labels.eq(classes.expand(batch_size, self.num_classes))
|
||||
|
||||
dist = []
|
||||
for i in range(batch_size):
|
||||
value = distmat[i][mask[i]]
|
||||
value = value.clamp(min=1e-12, max=1e+12) # for numerical stability
|
||||
dist.append(value)
|
||||
dist = torch.cat(dist)
|
||||
loss = dist.mean()
|
||||
|
||||
return loss
|
|
@ -1,23 +0,0 @@
|
|||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class RingLoss(nn.Module):
|
||||
"""Ring loss.
|
||||
|
||||
Reference:
|
||||
Zheng et al. Ring loss: Convex Feature Normalization for Face Recognition. CVPR 2018.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(RingLoss, self).__init__()
|
||||
warnings.warn('This method is deprecated')
|
||||
self.radius = nn.Parameter(torch.ones(1, dtype=torch.float))
|
||||
|
||||
def forward(self, x):
|
||||
loss = ((x.norm(p=2, dim=1) - self.radius)**2).mean()
|
||||
return loss
|
Loading…
Reference in New Issue