update mobilenetv2; add imagenet/reid weights
parent
eb680de371
commit
7ff331f871
|
@ -14,6 +14,8 @@
|
|||
| se_resnet50_fc512<sup>:dog:</sup> | 27.1 | xent | (256, 128) | [91.9 (75.8)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/se_resnet50_fc512_market_xent.zip) | [81.5 (63.7)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/se_resnet50_fc512_duke_xent.zip) | [71.1 (39.8)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/se_resnet50_fc512_msmt_xent.zip) |
|
||||
| shufflenet<sup>:dog:</sup> | 0.9 | xent | (256, 128) | [84.1(64.1)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/shufflenet_market_xent.zip) | [73.4(51.9)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/shufflenet_duke_xent.zip) | [51.3(24.2)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/shufflenet_msmt_xent.zip) |
|
||||
| squeezenet1_0_fc512<sup>:dog:</sup> | 1.0 | xent | (256, 128) | [79.3 (52.2)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/squeezenet1_0_fc512_market_xent.zip) | [66.6 (42.6)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/squeezenet1_0_fc512_duke_xent.zip) | [44.1 (17.1)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/squeezenet1_0_fc512_msmt_xent.zip) |
|
||||
| mobilenetv2_1dot0<sup>:dog:</sup> | 2.2 | xent | (256, 128) | [85.6 (67.3)](http://eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/mobilenetv2_1dot0_market.pth.tar) | [74.2 (54.7)](http://eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/mobilenetv2_1dot0_duke.pth.tar) | [57.4 (29.3)](http://eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/mobilenetv2_1dot0_msmt.pth.tar) |
|
||||
| mobilenetv2_1dot4<sup>:dog:</sup> | 4.3 | xent | (256, 128) | [87.0 (68.5)](http://eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/mobilenetv2_1dot4_market.pth.tar) | [76.2 (55.8)](http://eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/mobilenetv2_1dot4_duke.pth.tar) | [60.1 (31.5)](http://eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/mobilenetv2_1dot4_msmt.pth.tar) |
|
||||
| resnet50mid<sup>:dog:</sup> | 27.7 | xent | (256, 128) | [90.2 (76.0)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/resnet50mid_market_xent.zip) | [81.6 (64.0)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/resnet50mid_duke_xent.zip) | [69.0 (38.0)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/resnet50mid_msmt_xent.zip) |
|
||||
| mlfn<sup>:dog:</sup> | 32.5 | xent | (256, 128) | [90.1 (74.3)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/mlfn_market_xent.zip) | [81.1 (63.2)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/mlfn_duke_xent.zip) | [66.4 (37.2)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/mlfn_msmt_xent.zip) |
|
||||
| hacnn | 3.7 | xent | (160, 64) | [90.9 (75.6)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/hacnn_market_xent.zip) | [80.1 (63.2)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/hacnn_duke_xent.zip) | [64.7 (37.2)](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/hacnn_msmt_xent.zip) |
|
|
@ -38,7 +38,8 @@ __model_factory = {
|
|||
'xception': xception,
|
||||
# lightweight models
|
||||
'nasnsetmobile': nasnetamobile,
|
||||
'mobilenetv2': MobileNetV2,
|
||||
'mobilenetv2_1dot0': mobilenetv2_1dot0,
|
||||
'mobilenetv2_1dot4': mobilenetv2_1dot4,
|
||||
'shufflenet': shufflenet,
|
||||
'squeezenet1_0': squeezenet1_0,
|
||||
'squeezenet1_0_fc512': squeezenet1_0_fc512,
|
||||
|
|
|
@ -4,10 +4,18 @@ from __future__ import division
|
|||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
import torchvision
|
||||
import torch.utils.model_zoo as model_zoo
|
||||
|
||||
|
||||
__all__ = ['MobileNetV2']
|
||||
__all__ = ['mobilenetv2_1dot0', 'mobilenetv2_1dot4']
|
||||
|
||||
|
||||
model_urls = {
|
||||
# 1.0: top-1 71.3
|
||||
'mobilenetv2_1dot0': 'http://eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/imagenet-pretrained/mobilenetv2_1.0-0f5d2d8f.pth',
|
||||
# 1.4: top-1 73.9
|
||||
'mobilenetv2_1dot4': 'http://eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/imagenet-pretrained/mobilenetv2_1.4-4d0d3520.pth',
|
||||
}
|
||||
|
||||
|
||||
class ConvBlock(nn.Module):
|
||||
|
@ -33,7 +41,7 @@ class ConvBlock(nn.Module):
|
|||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, expansion_factor, stride):
|
||||
def __init__(self, in_channels, out_channels, expansion_factor, stride=1):
|
||||
super(Bottleneck, self).__init__()
|
||||
mid_channels = in_channels * expansion_factor
|
||||
self.use_residual = stride == 1 and in_channels == out_channels
|
||||
|
@ -54,7 +62,6 @@ class Bottleneck(nn.Module):
|
|||
return m
|
||||
|
||||
|
||||
|
||||
class MobileNetV2(nn.Module):
|
||||
"""
|
||||
MobileNetV2
|
||||
|
@ -62,67 +69,156 @@ class MobileNetV2(nn.Module):
|
|||
Reference:
|
||||
Sandler et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks. CVPR 2018.
|
||||
"""
|
||||
def __init__(self, num_classes, loss={'xent'}, **kwargs):
|
||||
|
||||
def __init__(self, num_classes, width_mult=1, loss={'xent'}, fc_dims=None, dropout_p=None, **kwargs):
|
||||
super(MobileNetV2, self).__init__()
|
||||
self.loss = loss
|
||||
self.in_channels = int(32 * width_mult)
|
||||
self.feature_dim = int(1280 * width_mult) if width_mult > 1 else 1280
|
||||
|
||||
self.conv1 = ConvBlock(3, 32, 3, s=2, p=1)
|
||||
self.block2 = Bottleneck(32, 16, 1, 1)
|
||||
self.block3 = nn.Sequential(
|
||||
Bottleneck(16, 24, 6, 2),
|
||||
Bottleneck(24, 24, 6, 1),
|
||||
)
|
||||
self.block4 = nn.Sequential(
|
||||
Bottleneck(24, 32, 6, 2),
|
||||
Bottleneck(32, 32, 6, 1),
|
||||
Bottleneck(32, 32, 6, 1),
|
||||
)
|
||||
self.block5 = nn.Sequential(
|
||||
Bottleneck(32, 64, 6, 2),
|
||||
Bottleneck(64, 64, 6, 1),
|
||||
Bottleneck(64, 64, 6, 1),
|
||||
Bottleneck(64, 64, 6, 1),
|
||||
)
|
||||
self.block6 = nn.Sequential(
|
||||
Bottleneck(64, 96, 6, 1),
|
||||
Bottleneck(96, 96, 6, 1),
|
||||
Bottleneck(96, 96, 6, 1),
|
||||
)
|
||||
self.block7 = nn.Sequential(
|
||||
Bottleneck(96, 160, 6, 2),
|
||||
Bottleneck(160, 160, 6, 1),
|
||||
Bottleneck(160, 160, 6, 1),
|
||||
)
|
||||
self.block8 = Bottleneck(160, 320, 6, 1)
|
||||
self.conv9 = ConvBlock(320, 1280, 1)
|
||||
self.classifier = nn.Linear(1280, num_classes)
|
||||
self.feat_dim = 1280
|
||||
# construct layers
|
||||
self.conv1 = ConvBlock(3, self.in_channels, 3, s=2, p=1)
|
||||
self.conv2 = self._make_layer(Bottleneck, 1, int(16 * width_mult), 1, 1)
|
||||
self.conv3 = self._make_layer(Bottleneck, 6, int(24 * width_mult), 2, 2)
|
||||
self.conv4 = self._make_layer(Bottleneck, 6, int(32 * width_mult), 3, 2)
|
||||
self.conv5 = self._make_layer(Bottleneck, 6, int(64 * width_mult), 4, 2)
|
||||
self.conv6 = self._make_layer(Bottleneck, 6, int(96 * width_mult), 3, 1)
|
||||
self.conv7 = self._make_layer(Bottleneck, 6, int(160 * width_mult), 3, 2)
|
||||
self.conv8 = self._make_layer(Bottleneck, 6, int(320 * width_mult), 1, 1)
|
||||
self.conv9 = ConvBlock(self.in_channels, self.feature_dim, 1)
|
||||
|
||||
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
|
||||
self.fc = self._construct_fc_layer(fc_dims, self.feature_dim, dropout_p)
|
||||
self.classifier = nn.Linear(self.feature_dim, num_classes)
|
||||
|
||||
self._init_params()
|
||||
|
||||
def _make_layer(self, block, t, c, n, s):
|
||||
# t: expansion factor
|
||||
# c: output channels
|
||||
# n: number of blocks
|
||||
# s: stride for first layer
|
||||
layers = []
|
||||
layers.append(block(self.in_channels, c, t, s))
|
||||
self.in_channels = c
|
||||
for i in range(1, n):
|
||||
layers.append(block(self.in_channels, c, t))
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
|
||||
"""
|
||||
Construct fully connected layer
|
||||
|
||||
- fc_dims (list or tuple): dimensions of fc layers, if None,
|
||||
no fc layers are constructed
|
||||
- input_dim (int): input dimension
|
||||
- dropout_p (float): dropout probability, if None, dropout is unused
|
||||
"""
|
||||
if fc_dims is None:
|
||||
self.feature_dim = input_dim
|
||||
return None
|
||||
|
||||
assert isinstance(fc_dims, (list, tuple)), 'fc_dims must be either list or tuple, but got {}'.format(type(fc_dims))
|
||||
|
||||
layers = []
|
||||
for dim in fc_dims:
|
||||
layers.append(nn.Linear(input_dim, dim))
|
||||
layers.append(nn.BatchNorm1d(dim))
|
||||
layers.append(nn.ReLU(inplace=True))
|
||||
if dropout_p is not None:
|
||||
layers.append(nn.Dropout(p=dropout_p))
|
||||
input_dim = dim
|
||||
|
||||
self.feature_dim = fc_dims[-1]
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def _init_params(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.BatchNorm1d):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, 0, 0.01)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def featuremaps(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.block2(x)
|
||||
x = self.block3(x)
|
||||
x = self.block4(x)
|
||||
x = self.block5(x)
|
||||
x = self.block6(x)
|
||||
x = self.block7(x)
|
||||
x = self.block8(x)
|
||||
x = self.conv2(x)
|
||||
x = self.conv3(x)
|
||||
x = self.conv4(x)
|
||||
x = self.conv5(x)
|
||||
x = self.conv6(x)
|
||||
x = self.conv7(x)
|
||||
x = self.conv8(x)
|
||||
x = self.conv9(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
x = self.featuremaps(x)
|
||||
x = F.avg_pool2d(x, x.size()[2:]).view(x.size(0), -1)
|
||||
x = F.dropout(x, training=self.training)
|
||||
f = self.featuremaps(x)
|
||||
v = self.global_avgpool(f)
|
||||
v = v.view(v.size(0), -1)
|
||||
|
||||
if self.fc is not None:
|
||||
v = self.fc(v)
|
||||
|
||||
if not self.training:
|
||||
return x
|
||||
|
||||
y = self.classifier(x)
|
||||
|
||||
return v
|
||||
|
||||
y = self.classifier(v)
|
||||
|
||||
if self.loss == {'xent'}:
|
||||
return y
|
||||
elif self.loss == {'xent', 'htri'}:
|
||||
return y, x
|
||||
return y, v
|
||||
else:
|
||||
raise KeyError('Unsupported loss: {}'.format(self.loss))
|
||||
raise KeyError("Unsupported loss: {}".format(self.loss))
|
||||
|
||||
|
||||
def init_pretrained_weights(model, model_url):
|
||||
"""
|
||||
Initialize model with pretrained weights.
|
||||
Layers that don't match with pretrained layers in name or size are kept unchanged.
|
||||
"""
|
||||
pretrain_dict = model_zoo.load_url(model_url)
|
||||
model_dict = model.state_dict()
|
||||
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
|
||||
model_dict.update(pretrain_dict)
|
||||
model.load_state_dict(model_dict)
|
||||
print('Initialized model with pretrained weights from {}'.format(model_url))
|
||||
|
||||
|
||||
def mobilenetv2_1dot0(num_classes, loss, pretrained=True, **kwargs):
|
||||
model = MobileNetV2(
|
||||
num_classes,
|
||||
loss=loss,
|
||||
width_mult=1,
|
||||
fc_dims=None,
|
||||
dropout_p=None,
|
||||
**kwargs
|
||||
)
|
||||
if pretrained:
|
||||
init_pretrained_weights(model, model_urls['mobilenetv2_1dot0'])
|
||||
return model
|
||||
|
||||
|
||||
def mobilenetv2_1dot4(num_classes, loss, pretrained=True, **kwargs):
|
||||
model = MobileNetV2(
|
||||
num_classes,
|
||||
loss=loss,
|
||||
width_mult=1.4,
|
||||
fc_dims=None,
|
||||
dropout_p=None,
|
||||
**kwargs
|
||||
)
|
||||
if pretrained:
|
||||
init_pretrained_weights(model, model_urls['mobilenetv2_1dot4'])
|
||||
return model
|
Loading…
Reference in New Issue