mv data_time after .cuda()
parent
49eed19f55
commit
8b53814783
|
@ -208,11 +208,12 @@ def train(epoch, model, criterion_xent, criterion_cent, optimizer_model, optimiz
|
|||
|
||||
end = time.time()
|
||||
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
||||
if use_gpu:
|
||||
imgs, pids = imgs.cuda(), pids.cuda()
|
||||
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
if use_gpu:
|
||||
imgs, pids = imgs.cuda(), pids.cuda()
|
||||
outputs, features = model(imgs)
|
||||
xentloss = criterion_xent(outputs, pids)
|
||||
centloss = criterion_cent(features, pids) * args.weight_cent
|
||||
|
|
|
@ -208,11 +208,12 @@ def train(epoch, model, criterion_xent, criterion_ring, optimizer, trainloader,
|
|||
|
||||
end = time.time()
|
||||
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
if use_gpu:
|
||||
imgs, pids = imgs.cuda(), pids.cuda()
|
||||
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
outputs, features = model(imgs)
|
||||
xentloss = criterion_xent(outputs, pids)
|
||||
ringloss = criterion_ring(features)
|
||||
|
|
|
@ -203,11 +203,12 @@ def train(epoch, model, criterion, optimizer, trainloader, use_gpu):
|
|||
|
||||
end = time.time()
|
||||
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
if use_gpu:
|
||||
imgs, pids = imgs.cuda(), pids.cuda()
|
||||
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
outputs = model(imgs)
|
||||
if isinstance(outputs, tuple):
|
||||
loss = DeepSupervision(criterion, outputs, pids)
|
||||
|
|
|
@ -212,11 +212,12 @@ def train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader,
|
|||
|
||||
end = time.time()
|
||||
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
if use_gpu:
|
||||
imgs, pids = imgs.cuda(), pids.cuda()
|
||||
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
outputs, features = model(imgs)
|
||||
if args.htri_only:
|
||||
if isinstance(features, tuple):
|
||||
|
|
|
@ -200,11 +200,12 @@ def train(epoch, model, criterion, optimizer, trainloader, use_gpu):
|
|||
|
||||
end = time.time()
|
||||
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
if use_gpu:
|
||||
imgs, pids = imgs.cuda(), pids.cuda()
|
||||
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
outputs = model(imgs)
|
||||
loss = criterion(outputs, pids)
|
||||
optimizer.zero_grad()
|
||||
|
|
|
@ -209,11 +209,12 @@ def train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader,
|
|||
|
||||
end = time.time()
|
||||
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
if use_gpu:
|
||||
imgs, pids = imgs.cuda(), pids.cuda()
|
||||
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
outputs, features = model(imgs)
|
||||
if args.htri_only:
|
||||
# only use hard triplet loss to train the network
|
||||
|
|
Loading…
Reference in New Issue