mirror of
https://github.com/KaiyangZhou/deep-person-reid.git
synced 2025-06-03 14:53:23 +08:00
mv data_time after .cuda()
This commit is contained in:
parent
49eed19f55
commit
8b53814783
@ -208,11 +208,12 @@ def train(epoch, model, criterion_xent, criterion_cent, optimizer_model, optimiz
|
|||||||
|
|
||||||
end = time.time()
|
end = time.time()
|
||||||
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
||||||
|
if use_gpu:
|
||||||
|
imgs, pids = imgs.cuda(), pids.cuda()
|
||||||
|
|
||||||
# measure data loading time
|
# measure data loading time
|
||||||
data_time.update(time.time() - end)
|
data_time.update(time.time() - end)
|
||||||
|
|
||||||
if use_gpu:
|
|
||||||
imgs, pids = imgs.cuda(), pids.cuda()
|
|
||||||
outputs, features = model(imgs)
|
outputs, features = model(imgs)
|
||||||
xentloss = criterion_xent(outputs, pids)
|
xentloss = criterion_xent(outputs, pids)
|
||||||
centloss = criterion_cent(features, pids) * args.weight_cent
|
centloss = criterion_cent(features, pids) * args.weight_cent
|
||||||
|
@ -208,11 +208,12 @@ def train(epoch, model, criterion_xent, criterion_ring, optimizer, trainloader,
|
|||||||
|
|
||||||
end = time.time()
|
end = time.time()
|
||||||
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
||||||
# measure data loading time
|
|
||||||
data_time.update(time.time() - end)
|
|
||||||
|
|
||||||
if use_gpu:
|
if use_gpu:
|
||||||
imgs, pids = imgs.cuda(), pids.cuda()
|
imgs, pids = imgs.cuda(), pids.cuda()
|
||||||
|
|
||||||
|
# measure data loading time
|
||||||
|
data_time.update(time.time() - end)
|
||||||
|
|
||||||
outputs, features = model(imgs)
|
outputs, features = model(imgs)
|
||||||
xentloss = criterion_xent(outputs, pids)
|
xentloss = criterion_xent(outputs, pids)
|
||||||
ringloss = criterion_ring(features)
|
ringloss = criterion_ring(features)
|
||||||
|
@ -203,11 +203,12 @@ def train(epoch, model, criterion, optimizer, trainloader, use_gpu):
|
|||||||
|
|
||||||
end = time.time()
|
end = time.time()
|
||||||
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
||||||
# measure data loading time
|
|
||||||
data_time.update(time.time() - end)
|
|
||||||
|
|
||||||
if use_gpu:
|
if use_gpu:
|
||||||
imgs, pids = imgs.cuda(), pids.cuda()
|
imgs, pids = imgs.cuda(), pids.cuda()
|
||||||
|
|
||||||
|
# measure data loading time
|
||||||
|
data_time.update(time.time() - end)
|
||||||
|
|
||||||
outputs = model(imgs)
|
outputs = model(imgs)
|
||||||
if isinstance(outputs, tuple):
|
if isinstance(outputs, tuple):
|
||||||
loss = DeepSupervision(criterion, outputs, pids)
|
loss = DeepSupervision(criterion, outputs, pids)
|
||||||
|
@ -212,11 +212,12 @@ def train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader,
|
|||||||
|
|
||||||
end = time.time()
|
end = time.time()
|
||||||
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
||||||
# measure data loading time
|
|
||||||
data_time.update(time.time() - end)
|
|
||||||
|
|
||||||
if use_gpu:
|
if use_gpu:
|
||||||
imgs, pids = imgs.cuda(), pids.cuda()
|
imgs, pids = imgs.cuda(), pids.cuda()
|
||||||
|
|
||||||
|
# measure data loading time
|
||||||
|
data_time.update(time.time() - end)
|
||||||
|
|
||||||
outputs, features = model(imgs)
|
outputs, features = model(imgs)
|
||||||
if args.htri_only:
|
if args.htri_only:
|
||||||
if isinstance(features, tuple):
|
if isinstance(features, tuple):
|
||||||
|
@ -200,11 +200,12 @@ def train(epoch, model, criterion, optimizer, trainloader, use_gpu):
|
|||||||
|
|
||||||
end = time.time()
|
end = time.time()
|
||||||
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
||||||
# measure data loading time
|
|
||||||
data_time.update(time.time() - end)
|
|
||||||
|
|
||||||
if use_gpu:
|
if use_gpu:
|
||||||
imgs, pids = imgs.cuda(), pids.cuda()
|
imgs, pids = imgs.cuda(), pids.cuda()
|
||||||
|
|
||||||
|
# measure data loading time
|
||||||
|
data_time.update(time.time() - end)
|
||||||
|
|
||||||
outputs = model(imgs)
|
outputs = model(imgs)
|
||||||
loss = criterion(outputs, pids)
|
loss = criterion(outputs, pids)
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
|
@ -209,11 +209,12 @@ def train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader,
|
|||||||
|
|
||||||
end = time.time()
|
end = time.time()
|
||||||
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
|
||||||
# measure data loading time
|
|
||||||
data_time.update(time.time() - end)
|
|
||||||
|
|
||||||
if use_gpu:
|
if use_gpu:
|
||||||
imgs, pids = imgs.cuda(), pids.cuda()
|
imgs, pids = imgs.cuda(), pids.cuda()
|
||||||
|
|
||||||
|
# measure data loading time
|
||||||
|
data_time.update(time.time() - end)
|
||||||
|
|
||||||
outputs, features = model(imgs)
|
outputs, features = model(imgs)
|
||||||
if args.htri_only:
|
if args.htri_only:
|
||||||
# only use hard triplet loss to train the network
|
# only use hard triplet loss to train the network
|
||||||
|
Loading…
x
Reference in New Issue
Block a user