diff --git a/_modules/torchreid/engine/engine.html b/_modules/torchreid/engine/engine.html index 7f190c9..6d6f22a 100644 --- a/_modules/torchreid/engine/engine.html +++ b/_modules/torchreid/engine/engine.html @@ -537,10 +537,10 @@ end = time.time() features = self.extract_features(imgs) batch_time.update(time.time() - end) - features = features.cpu().clone() + features = features.cpu() f_.append(features) - pids_.extend(pids) - camids_.extend(camids) + pids_.extend(pids.tolist()) + camids_.extend(camids.tolist()) f_ = torch.cat(f_, 0) pids_ = np.asarray(pids_) camids_ = np.asarray(camids_) diff --git a/index.html b/index.html index df1411d..8bfacef 100644 --- a/index.html +++ b/index.html @@ -256,22 +256,22 @@ python setup.py develop
Load data manager
datamanager = torchreid.data.ImageDataManager(
- root='reid-data',
- sources='market1501',
- targets='market1501',
+ root="reid-data",
+ sources="market1501",
+ targets="market1501",
height=256,
width=128,
batch_size_train=32,
batch_size_test=100,
- transforms=['random_flip', 'random_crop']
+ transforms=["random_flip", "random_crop"]
)
3 Build model, optimizer and lr_scheduler
model = torchreid.models.build_model(
- name='resnet50',
+ name="resnet50",
num_classes=datamanager.num_train_pids,
- loss='softmax',
+ loss="softmax",
pretrained=True
)
@@ -279,13 +279,13 @@ python setup.py develop
optimizer = torchreid.optim.build_optimizer(
model,
- optim='adam',
+ optim="adam",
lr=0.0003
)
scheduler = torchreid.optim.build_lr_scheduler(
optimizer,
- lr_scheduler='single_step',
+ lr_scheduler="single_step",
stepsize=20
)
Run training and test
engine.run(
- save_dir='log/resnet50',
+ save_dir="log/resnet50",
max_epoch=60,
eval_freq=10,
print_freq=10,