add --htri-only
parent
338e36344e
commit
952e99e4fb
|
@ -52,6 +52,8 @@ parser.add_argument('--weight-decay', default=5e-04, type=float,
|
|||
parser.add_argument('--margin', type=float, default=0.3, help="margin for triplet loss")
|
||||
parser.add_argument('--num-instances', type=int, default=4,
|
||||
help="number of instances per identity")
|
||||
parser.add_argument('--htri-only', action='store_true', default=False,
|
||||
help="if this is True, only htri loss is used in training")
|
||||
# Architecture
|
||||
parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.get_names())
|
||||
# Miscs
|
||||
|
@ -184,9 +186,14 @@ def train(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu
|
|||
imgs, pids = imgs.cuda(), pids.cuda()
|
||||
imgs, pids = Variable(imgs), Variable(pids)
|
||||
outputs, features = model(imgs)
|
||||
xent_loss = criterion_xent(outputs, pids)
|
||||
htri_loss = criterion_htri(features, pids)
|
||||
loss = xent_loss + htri_loss
|
||||
if args.htri_only:
|
||||
# only use hard triplet loss to train the network
|
||||
loss = criterion_htri(features, pids)
|
||||
else:
|
||||
# combine hard triplet loss with cross entropy loss
|
||||
xent_loss = criterion_xent(outputs, pids)
|
||||
htri_loss = criterion_htri(features, pids)
|
||||
loss = xent_loss + htri_loss
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
|
|
@ -53,6 +53,8 @@ parser.add_argument('--weight-decay', default=5e-04, type=float,
|
|||
parser.add_argument('--margin', type=float, default=0.3, help="margin for triplet loss")
|
||||
parser.add_argument('--num-instances', type=int, default=4,
|
||||
help="number of instances per identity")
|
||||
parser.add_argument('--htri-only', action='store_true', default=False,
|
||||
help="if this is True, only htri loss is used in training")
|
||||
# Architecture
|
||||
parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.get_names())
|
||||
parser.add_argument('--pool', type=str, default='avg', choices=['avg', 'max'])
|
||||
|
@ -192,9 +194,14 @@ def train(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu
|
|||
imgs, pids = imgs.cuda(), pids.cuda()
|
||||
imgs, pids = Variable(imgs), Variable(pids)
|
||||
outputs, features = model(imgs)
|
||||
xent_loss = criterion_xent(outputs, pids)
|
||||
htri_loss = criterion_htri(features, pids)
|
||||
loss = xent_loss + htri_loss
|
||||
if args.htri_only:
|
||||
# only use hard triplet loss to train the network
|
||||
loss = criterion_htri(features, pids)
|
||||
else:
|
||||
# combine hard triplet loss with cross entropy loss
|
||||
xent_loss = criterion_xent(outputs, pids)
|
||||
htri_loss = criterion_htri(features, pids)
|
||||
loss = xent_loss + htri_loss
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
|
Loading…
Reference in New Issue