merge resnet and resnext; add shufflenetv2
parent
ac89f94129
commit
97ee4b423b
|
@ -4,7 +4,6 @@ import torch
|
|||
|
||||
from .resnet import *
|
||||
from .resnetmid import *
|
||||
from .resnext import *
|
||||
from .senet import *
|
||||
from .densenet import *
|
||||
from .inceptionresnetv2 import *
|
||||
|
@ -15,6 +14,7 @@ from .nasnet import *
|
|||
from .mobilenetv2 import *
|
||||
from .shufflenet import *
|
||||
from .squeezenet import *
|
||||
from .shufflenetv2 import *
|
||||
|
||||
from .mudeep import *
|
||||
from .hacnn import *
|
||||
|
@ -29,9 +29,9 @@ __model_factory = {
|
|||
'resnet50': resnet50,
|
||||
'resnet101': resnet101,
|
||||
'resnet152': resnet152,
|
||||
'resnet50_fc512': resnet50_fc512,
|
||||
'resnext50_32x4d': resnext50_32x4d,
|
||||
'resnext50_32x4d_fc512': resnext50_32x4d_fc512,
|
||||
'resnext101_32x8d': resnext101_32x8d,
|
||||
'resnet50_fc512': resnet50_fc512,
|
||||
'se_resnet50': se_resnet50,
|
||||
'se_resnet50_fc512': se_resnet50_fc512,
|
||||
'se_resnet101': se_resnet101,
|
||||
|
@ -53,6 +53,10 @@ __model_factory = {
|
|||
'squeezenet1_0': squeezenet1_0,
|
||||
'squeezenet1_0_fc512': squeezenet1_0_fc512,
|
||||
'squeezenet1_1': squeezenet1_1,
|
||||
'shufflenet_v2_x0_5': shufflenet_v2_x0_5,
|
||||
'shufflenet_v2_x1_0': shufflenet_v2_x1_0,
|
||||
'shufflenet_v2_x1_5': shufflenet_v2_x1_5,
|
||||
'shufflenet_v2_x2_0': shufflenet_v2_x2_0,
|
||||
# reid-specific models
|
||||
'mudeep': MuDeep,
|
||||
'resnet50mid': resnet50mid,
|
||||
|
|
|
@ -1,3 +1,6 @@
|
|||
"""
|
||||
Code source: https://github.com/pytorch/vision
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
||||
|
|
|
@ -1,7 +1,11 @@
|
|||
"""
|
||||
Code source: https://github.com/pytorch/vision
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
||||
__all__ = ['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnet50_fc512']
|
||||
__all__ = ['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d',
|
||||
'resnext101_32x8d', 'resnet50_fc512']
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
@ -16,30 +20,45 @@ model_urls = {
|
|||
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
||||
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
||||
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
||||
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
|
||||
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
|
||||
}
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1):
|
||||
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
||||
"""3x3 convolution with padding"""
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
padding=dilation, groups=groups, bias=False, dilation=dilation)
|
||||
|
||||
|
||||
def conv1x1(in_planes, out_planes, stride=1):
|
||||
"""1x1 convolution"""
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
|
||||
base_width=64, dilation=1, norm_layer=None):
|
||||
super(BasicBlock, self).__init__()
|
||||
if norm_layer is None:
|
||||
norm_layer = nn.BatchNorm2d
|
||||
if groups != 1 or base_width != 64:
|
||||
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
||||
if dilation > 1:
|
||||
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
||||
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
||||
self.conv1 = conv3x3(inplanes, planes, stride)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.bn1 = norm_layer(planes)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.conv2 = conv3x3(planes, planes)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.bn2 = norm_layer(planes)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
|
@ -49,9 +68,9 @@ class BasicBlock(nn.Module):
|
|||
out = self.bn2(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
@ -60,21 +79,25 @@ class BasicBlock(nn.Module):
|
|||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
|
||||
base_width=64, dilation=1, norm_layer=None):
|
||||
super(Bottleneck, self).__init__()
|
||||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||||
if norm_layer is None:
|
||||
norm_layer = nn.BatchNorm2d
|
||||
width = int(planes * (base_width / 64.)) * groups
|
||||
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
||||
self.conv1 = conv1x1(inplanes, width)
|
||||
self.bn1 = norm_layer(width)
|
||||
self.conv2 = conv3x3(width, width, stride, groups, dilation)
|
||||
self.bn2 = norm_layer(width)
|
||||
self.conv3 = conv1x1(width, planes * self.expansion)
|
||||
self.bn3 = norm_layer(planes * self.expansion)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
|
@ -88,9 +111,9 @@ class Bottleneck(nn.Module):
|
|||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
@ -100,7 +123,8 @@ class ResNet(nn.Module):
|
|||
"""Residual network.
|
||||
|
||||
Reference:
|
||||
He et al. Deep Residual Learning for Image Recognition. CVPR 2016.
|
||||
- He et al. Deep Residual Learning for Image Recognition. CVPR 2016.
|
||||
- Xie et al. Aggregated Residual Transformations for Deep Neural Networks. CVPR 2017.
|
||||
|
||||
Public keys:
|
||||
- ``resnet18``: ResNet18.
|
||||
|
@ -108,49 +132,80 @@ class ResNet(nn.Module):
|
|||
- ``resnet50``: ResNet50.
|
||||
- ``resnet101``: ResNet101.
|
||||
- ``resnet152``: ResNet152.
|
||||
- ``resnext50_32x4d``: ResNeXt50.
|
||||
- ``resnext101_32x8d``: ResNeXt101.
|
||||
- ``resnet50_fc512``: ResNet50 + FC.
|
||||
"""
|
||||
|
||||
def __init__(self, num_classes, loss, block, layers,
|
||||
last_stride=2,
|
||||
fc_dims=None,
|
||||
dropout_p=None,
|
||||
**kwargs):
|
||||
self.inplanes = 64
|
||||
|
||||
def __init__(self, num_classes, loss, block, layers, zero_init_residual=False,
|
||||
groups=1, width_per_group=64, replace_stride_with_dilation=None,
|
||||
norm_layer=None, last_stride=2, fc_dims=None, dropout_p=None, **kwargs):
|
||||
super(ResNet, self).__init__()
|
||||
if norm_layer is None:
|
||||
norm_layer = nn.BatchNorm2d
|
||||
self._norm_layer = norm_layer
|
||||
self.loss = loss
|
||||
self.feature_dim = 512 * block.expansion
|
||||
|
||||
# backbone network
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(64)
|
||||
self.inplanes = 64
|
||||
self.dilation = 1
|
||||
if replace_stride_with_dilation is None:
|
||||
# each element in the tuple indicates if we should replace
|
||||
# the 2x2 stride with a dilated convolution instead
|
||||
replace_stride_with_dilation = [False, False, False]
|
||||
if len(replace_stride_with_dilation) != 3:
|
||||
raise ValueError("replace_stride_with_dilation should be None "
|
||||
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
||||
self.groups = groups
|
||||
self.base_width = width_per_group
|
||||
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
|
||||
bias=False)
|
||||
self.bn1 = norm_layer(self.inplanes)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, 64, layers[0])
|
||||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
||||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, 512, layers[3], stride=last_stride)
|
||||
|
||||
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
|
||||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
|
||||
dilate=replace_stride_with_dilation[0])
|
||||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
|
||||
dilate=replace_stride_with_dilation[1])
|
||||
self.layer4 = self._make_layer(block, 512, layers[3], stride=last_stride,
|
||||
dilate=replace_stride_with_dilation[2])
|
||||
self.global_avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.fc = self._construct_fc_layer(fc_dims, 512 * block.expansion, dropout_p)
|
||||
self.classifier = nn.Linear(self.feature_dim, num_classes)
|
||||
|
||||
self._init_params()
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1):
|
||||
# Zero-initialize the last BN in each residual branch,
|
||||
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
||||
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, Bottleneck):
|
||||
nn.init.constant_(m.bn3.weight, 0)
|
||||
elif isinstance(m, BasicBlock):
|
||||
nn.init.constant_(m.bn2.weight, 0)
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
|
||||
norm_layer = self._norm_layer
|
||||
downsample = None
|
||||
previous_dilation = self.dilation
|
||||
if dilate:
|
||||
self.dilation *= stride
|
||||
stride = 1
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2d(self.inplanes, planes * block.expansion,
|
||||
kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
conv1x1(self.inplanes, planes * block.expansion, stride),
|
||||
norm_layer(planes * block.expansion),
|
||||
)
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, downsample))
|
||||
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
|
||||
self.base_width, previous_dilation, norm_layer))
|
||||
self.inplanes = planes * block.expansion
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes))
|
||||
for _ in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, groups=self.groups,
|
||||
base_width=self.base_width, dilation=self.dilation,
|
||||
norm_layer=norm_layer))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
|
@ -242,17 +297,7 @@ def init_pretrained_weights(model, model_url):
|
|||
model.load_state_dict(model_dict)
|
||||
|
||||
|
||||
"""
|
||||
Residual network configurations:
|
||||
--
|
||||
resnet18: block=BasicBlock, layers=[2, 2, 2, 2]
|
||||
resnet34: block=BasicBlock, layers=[3, 4, 6, 3]
|
||||
resnet50: block=Bottleneck, layers=[3, 4, 6, 3]
|
||||
resnet101: block=Bottleneck, layers=[3, 4, 23, 3]
|
||||
resnet152: block=Bottleneck, layers=[3, 8, 36, 3]
|
||||
"""
|
||||
|
||||
|
||||
"""ResNet"""
|
||||
def resnet18(num_classes, loss='softmax', pretrained=True, **kwargs):
|
||||
model = ResNet(
|
||||
num_classes=num_classes,
|
||||
|
@ -333,8 +378,45 @@ def resnet152(num_classes, loss='softmax', pretrained=True, **kwargs):
|
|||
return model
|
||||
|
||||
|
||||
"""ResNeXt"""
|
||||
def resnext50_32x4d(num_classes, loss='softmax', pretrained=True, **kwargs):
|
||||
model = ResNet(
|
||||
num_classes=num_classes,
|
||||
loss=loss,
|
||||
block=Bottleneck,
|
||||
layers=[3, 4, 6, 3],
|
||||
last_stride=2,
|
||||
fc_dims=None,
|
||||
dropout_p=None,
|
||||
groups=32,
|
||||
width_per_group=4,
|
||||
**kwargs
|
||||
)
|
||||
if pretrained:
|
||||
init_pretrained_weights(model, model_urls['resnext50_32x4d'])
|
||||
return model
|
||||
|
||||
|
||||
def resnext101_32x8d(num_classes, loss='softmax', pretrained=True, **kwargs):
|
||||
model = ResNet(
|
||||
num_classes=num_classes,
|
||||
loss=loss,
|
||||
block=Bottleneck,
|
||||
layers=[3, 4, 23, 3],
|
||||
last_stride=2,
|
||||
fc_dims=None,
|
||||
dropout_p=None,
|
||||
groups=32,
|
||||
width_per_group=8,
|
||||
**kwargs
|
||||
)
|
||||
if pretrained:
|
||||
init_pretrained_weights(model, model_urls['resnext101_32x8d'])
|
||||
return model
|
||||
|
||||
|
||||
"""
|
||||
resnet + fc
|
||||
ResNet + FC
|
||||
"""
|
||||
def resnet50_fc512(num_classes, loss='softmax', pretrained=True, **kwargs):
|
||||
model = ResNet(
|
||||
|
@ -349,4 +431,4 @@ def resnet50_fc512(num_classes, loss='softmax', pretrained=True, **kwargs):
|
|||
)
|
||||
if pretrained:
|
||||
init_pretrained_weights(model, model_urls['resnet50'])
|
||||
return model
|
||||
return model
|
||||
|
|
|
@ -0,0 +1,204 @@
|
|||
"""
|
||||
Code source: https://github.com/pytorch/vision
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
||||
__all__ = ['shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'shufflenet_v2_x1_5', 'shufflenet_v2_x2_0']
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
import torchvision
|
||||
import torch.utils.model_zoo as model_zoo
|
||||
|
||||
|
||||
model_urls = {
|
||||
'shufflenetv2_x0.5': 'https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth',
|
||||
'shufflenetv2_x1.0': 'https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth',
|
||||
'shufflenetv2_x1.5': None,
|
||||
'shufflenetv2_x2.0': None,
|
||||
}
|
||||
|
||||
|
||||
def channel_shuffle(x, groups):
|
||||
batchsize, num_channels, height, width = x.data.size()
|
||||
channels_per_group = num_channels // groups
|
||||
|
||||
# reshape
|
||||
x = x.view(batchsize, groups,
|
||||
channels_per_group, height, width)
|
||||
|
||||
x = torch.transpose(x, 1, 2).contiguous()
|
||||
|
||||
# flatten
|
||||
x = x.view(batchsize, -1, height, width)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class InvertedResidual(nn.Module):
|
||||
|
||||
def __init__(self, inp, oup, stride):
|
||||
super(InvertedResidual, self).__init__()
|
||||
|
||||
if not (1 <= stride <= 3):
|
||||
raise ValueError('illegal stride value')
|
||||
self.stride = stride
|
||||
|
||||
branch_features = oup // 2
|
||||
assert (self.stride != 1) or (inp == branch_features << 1)
|
||||
|
||||
if self.stride > 1:
|
||||
self.branch1 = nn.Sequential(
|
||||
self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
|
||||
nn.BatchNorm2d(inp),
|
||||
nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(branch_features),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
|
||||
self.branch2 = nn.Sequential(
|
||||
nn.Conv2d(inp if (self.stride > 1) else branch_features,
|
||||
branch_features, kernel_size=1, stride=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(branch_features),
|
||||
nn.ReLU(inplace=True),
|
||||
self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
|
||||
nn.BatchNorm2d(branch_features),
|
||||
nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(branch_features),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
|
||||
return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
|
||||
|
||||
def forward(self, x):
|
||||
if self.stride == 1:
|
||||
x1, x2 = x.chunk(2, dim=1)
|
||||
out = torch.cat((x1, self.branch2(x2)), dim=1)
|
||||
else:
|
||||
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
|
||||
|
||||
out = channel_shuffle(out, 2)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ShuffleNetV2(nn.Module):
|
||||
"""ShuffleNetV2.
|
||||
|
||||
Reference:
|
||||
Ma et al. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. ECCV 2018.
|
||||
"""
|
||||
|
||||
def __init__(self, num_classes, loss, stages_repeats, stages_out_channels, **kwargs):
|
||||
super(ShuffleNetV2, self).__init__()
|
||||
self.loss = loss
|
||||
|
||||
if len(stages_repeats) != 3:
|
||||
raise ValueError('expected stages_repeats as list of 3 positive ints')
|
||||
if len(stages_out_channels) != 5:
|
||||
raise ValueError('expected stages_out_channels as list of 5 positive ints')
|
||||
self._stage_out_channels = stages_out_channels
|
||||
|
||||
input_channels = 3
|
||||
output_channels = self._stage_out_channels[0]
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False),
|
||||
nn.BatchNorm2d(output_channels),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
input_channels = output_channels
|
||||
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
|
||||
stage_names = ['stage{}'.format(i) for i in [2, 3, 4]]
|
||||
for name, repeats, output_channels in zip(
|
||||
stage_names, stages_repeats, self._stage_out_channels[1:]):
|
||||
seq = [InvertedResidual(input_channels, output_channels, 2)]
|
||||
for i in range(repeats - 1):
|
||||
seq.append(InvertedResidual(output_channels, output_channels, 1))
|
||||
setattr(self, name, nn.Sequential(*seq))
|
||||
input_channels = output_channels
|
||||
|
||||
output_channels = self._stage_out_channels[-1]
|
||||
self.conv5 = nn.Sequential(
|
||||
nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(output_channels),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
self.global_avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
|
||||
self.classifier = nn.Linear(output_channels, num_classes)
|
||||
|
||||
def featuremaps(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.maxpool(x)
|
||||
x = self.stage2(x)
|
||||
x = self.stage3(x)
|
||||
x = self.stage4(x)
|
||||
x = self.conv5(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
f = self.featuremaps(x)
|
||||
v = self.global_avgpool(f)
|
||||
v = v.view(v.size(0), -1)
|
||||
|
||||
if not self.training:
|
||||
return v
|
||||
|
||||
y = self.classifier(v)
|
||||
|
||||
if self.loss == 'softmax':
|
||||
return y
|
||||
elif self.loss == 'triplet':
|
||||
return y, v
|
||||
else:
|
||||
raise KeyError("Unsupported loss: {}".format(self.loss))
|
||||
|
||||
|
||||
def init_pretrained_weights(model, model_url):
|
||||
"""Initializes model with pretrained weights.
|
||||
|
||||
Layers that don't match with pretrained layers in name or size are kept unchanged.
|
||||
"""
|
||||
if model_url is None:
|
||||
import warnings
|
||||
warnings.warn('ImageNet pretrained weights are unavailable for this model')
|
||||
return
|
||||
pretrain_dict = model_zoo.load_url(model_url)
|
||||
model_dict = model.state_dict()
|
||||
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
|
||||
model_dict.update(pretrain_dict)
|
||||
model.load_state_dict(model_dict)
|
||||
|
||||
|
||||
def shufflenet_v2_x0_5(num_classes, loss='softmax', pretrained=True, **kwargs):
|
||||
model = ShuffleNetV2(num_classes, loss, [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs)
|
||||
if pretrained:
|
||||
init_pretrained_weights(model, model_urls['shufflenetv2_x0.5'])
|
||||
return model
|
||||
|
||||
|
||||
def shufflenet_v2_x1_0(num_classes, loss='softmax', pretrained=True, **kwargs):
|
||||
model = ShuffleNetV2(num_classes, loss, [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs)
|
||||
if pretrained:
|
||||
init_pretrained_weights(model, model_urls['shufflenetv2_x1.0'])
|
||||
return model
|
||||
|
||||
|
||||
def shufflenet_v2_x1_5(num_classes, loss='softmax', pretrained=True, **kwargs):
|
||||
model = ShuffleNetV2(num_classes, loss, [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs)
|
||||
if pretrained:
|
||||
init_pretrained_weights(model, model_urls['shufflenetv2_x1.5'])
|
||||
return model
|
||||
|
||||
|
||||
def shufflenet_v2_x2_0(num_classes, loss='softmax', pretrained=True, **kwargs):
|
||||
model = ShuffleNetV2(num_classes, loss, [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs)
|
||||
if pretrained:
|
||||
init_pretrained_weights(model, model_urls['shufflenetv2_x2.0'])
|
||||
return model
|
|
@ -1,3 +1,6 @@
|
|||
"""
|
||||
Code source: https://github.com/pytorch/vision
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
||||
|
|
Loading…
Reference in New Issue