v1.2.6: add RandomDomainSampler

pull/405/head
KaiyangZhou 2020-08-01 11:52:55 +01:00
parent b075bd3f4b
commit ad4d8d7c29
4 changed files with 86 additions and 6 deletions

View File

@ -42,6 +42,7 @@ def get_default_config():
cfg.sampler.train_sampler = 'RandomSampler' # sampler for source train loader
cfg.sampler.train_sampler_t = 'RandomSampler' # sampler for target train loader
cfg.sampler.num_instances = 4 # number of instances per identity for RandomIdentitySampler
cfg.sampler.num_cams = 1 # number of cameras to sample in a batch (for RandomDomainSampler)
# video reid setting
cfg.video = CN()
@ -126,6 +127,7 @@ def imagedata_kwargs(cfg):
'batch_size_test': cfg.test.batch_size,
'workers': cfg.data.workers,
'num_instances': cfg.sampler.num_instances,
'num_cams': cfg.sampler.num_cams,
'train_sampler': cfg.sampler.train_sampler,
'train_sampler_t': cfg.sampler.train_sampler_t,
# image
@ -152,6 +154,7 @@ def videodata_kwargs(cfg):
'batch_size_test': cfg.test.batch_size,
'workers': cfg.data.workers,
'num_instances': cfg.sampler.num_instances,
'num_cams': cfg.sampler.num_cams,
'train_sampler': cfg.sampler.train_sampler,
# video
'seq_len': cfg.video.seq_len,

View File

@ -2,7 +2,7 @@ from __future__ import print_function, absolute_import
from torchreid import data, optim, utils, engine, losses, models, metrics
__version__ = '1.2.5'
__version__ = '1.2.6'
__author__ = 'Kaiyang Zhou'
__homepage__ = 'https://kaiyangzhou.github.io/'
__description__ = 'Deep learning person re-identification in PyTorch'

View File

@ -115,6 +115,8 @@ class ImageDataManager(DataManager):
workers (int, optional): number of workers. Default is 4.
num_instances (int, optional): number of instances per identity in a batch.
Default is 4.
num_cams (int, optional): number of cameras to sample in a batch (when using
``RandomDomainSampler``). Default is 1.
train_sampler (str, optional): sampler. Default is RandomSampler.
train_sampler_t (str, optional): sampler for target train loader. Default is RandomSampler.
cuhk03_labeled (bool, optional): use cuhk03 labeled images.
@ -165,6 +167,7 @@ class ImageDataManager(DataManager):
batch_size_test=32,
workers=4,
num_instances=4,
num_cams=1,
train_sampler='RandomSampler',
train_sampler_t='RandomSampler',
cuhk03_labeled=False,
@ -210,7 +213,8 @@ class ImageDataManager(DataManager):
trainset.train,
train_sampler,
batch_size=batch_size_train,
num_instances=num_instances
num_instances=num_instances,
num_cams=num_cams
),
batch_size=batch_size_train,
shuffle=False,
@ -249,7 +253,8 @@ class ImageDataManager(DataManager):
trainset_t.train,
train_sampler_t,
batch_size=batch_size_train,
num_instances=num_instances
num_instances=num_instances,
num_cams=num_cams
),
batch_size=batch_size_train,
shuffle=False,
@ -360,6 +365,8 @@ class VideoDataManager(DataManager):
workers (int, optional): number of workers. Default is 4.
num_instances (int, optional): number of instances per identity in a batch.
Default is 4.
num_cams (int, optional): number of cameras to sample in a batch (when using
``RandomDomainSampler``). Default is 1.
train_sampler (str, optional): sampler. Default is RandomSampler.
seq_len (int, optional): how many images to sample in a tracklet. Default is 15.
sample_method (str, optional): how to sample images in a tracklet. Default is "evenly".
@ -411,6 +418,7 @@ class VideoDataManager(DataManager):
batch_size_test=3,
workers=4,
num_instances=4,
num_cams=1,
train_sampler='RandomSampler',
seq_len=15,
sample_method='evenly'
@ -450,7 +458,8 @@ class VideoDataManager(DataManager):
trainset.train,
train_sampler,
batch_size=batch_size_train,
num_instances=num_instances
num_instances=num_instances,
num_cams=num_cams
)
self.train_loader = torch.utils.data.DataLoader(

View File

@ -5,7 +5,10 @@ import random
from collections import defaultdict
from torch.utils.data.sampler import Sampler, RandomSampler, SequentialSampler
AVAI_SAMPLERS = ['RandomIdentitySampler', 'SequentialSampler', 'RandomSampler']
AVAI_SAMPLERS = [
'RandomIdentitySampler', 'SequentialSampler', 'RandomSampler',
'RandomDomainSampler'
]
class RandomIdentitySampler(Sampler):
@ -77,8 +80,68 @@ class RandomIdentitySampler(Sampler):
return self.length
class RandomDomainSampler(Sampler):
"""Random domain sampler.
Each camera is considered as a distinct domain.
1. Randomly sample N cameras.
2. From each camera, randomly sample K images.
"""
def __init__(self, data_source, batch_size, n_domain):
self.data_source = data_source
# Keep track of image indices for each domain
self.domain_dict = defaultdict(list)
for i, (_, _, camid) in enumerate(data_source):
self.domain_dict[camid].append(i)
self.domains = list(self.domain_dict.keys())
# Make sure each domain has equal number of images
if n_domain is None or n_domain <= 0:
n_domain = len(self.domains)
assert batch_size % n_domain == 0
self.n_img_per_domain = batch_size // n_domain
self.batch_size = batch_size
# n_domain denotes number of domains sampled in a minibatch
self.n_domain = n_domain
self.length = len(list(self.__iter__()))
def __iter__(self):
domain_dict = copy.deepcopy(self.domain_dict)
final_idxs = []
stop_sampling = False
while not stop_sampling:
selected_domains = random.sample(self.domains, self.n_domain)
for domain in selected_domains:
idxs = domain_dict[domain]
selected_idxs = random.sample(idxs, self.n_img_per_domain)
final_idxs.extend(selected_idxs)
for idx in selected_idxs:
domain_dict[domain].remove(idx)
remaining = len(domain_dict[domain])
if remaining < self.n_img_per_domain:
stop_sampling = True
return iter(final_idxs)
def __len__(self):
return self.length
def build_train_sampler(
data_source, train_sampler, batch_size=32, num_instances=4, **kwargs
data_source,
train_sampler,
batch_size=32,
num_instances=4,
num_cams=1,
**kwargs
):
"""Builds a training sampler.
@ -88,6 +151,8 @@ def build_train_sampler(
batch_size (int, optional): batch size. Default is 32.
num_instances (int, optional): number of instances per identity in a
batch (when using ``RandomIdentitySampler``). Default is 4.
num_cams (int, optional): number of cameras to sample in a batch (when using
``RandomDomainSampler``). Default is 1.
"""
assert train_sampler in AVAI_SAMPLERS, \
'train_sampler must be one of {}, but got {}'.format(AVAI_SAMPLERS, train_sampler)
@ -95,6 +160,9 @@ def build_train_sampler(
if train_sampler == 'RandomIdentitySampler':
sampler = RandomIdentitySampler(data_source, batch_size, num_instances)
elif train_sampler == 'RandomDomainSampler':
sampler = RandomDomainSampler(data_source, batch_size, num_cams)
elif train_sampler == 'SequentialSampler':
sampler = SequentialSampler(data_source)