add ibn-net
parent
496c82d407
commit
aebb6033e0
|
@ -4,6 +4,8 @@ import torch
|
|||
|
||||
from .resnet import *
|
||||
from .resnetmid import *
|
||||
from .resnet_ibn_a import *
|
||||
from .resnet_ibn_b import *
|
||||
from .senet import *
|
||||
from .densenet import *
|
||||
from .inceptionresnetv2 import *
|
||||
|
@ -47,6 +49,8 @@ __model_factory = {
|
|||
'inceptionresnetv2': inceptionresnetv2,
|
||||
'inceptionv4': inceptionv4,
|
||||
'xception': xception,
|
||||
'resnet50_ibn_a': resnet50_ibn_a,
|
||||
'resnet50_ibn_b': resnet50_ibn_b,
|
||||
# lightweight models
|
||||
'nasnsetmobile': nasnetamobile,
|
||||
'mobilenetv2_x1_0': mobilenetv2_x1_0,
|
||||
|
|
|
@ -0,0 +1,251 @@
|
|||
"""
|
||||
Credit to https://github.com/XingangPan/IBN-Net.
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
||||
__all__ = ['resnet50_ibn_a']
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
import torch.utils.model_zoo as model_zoo
|
||||
|
||||
|
||||
model_urls = {
|
||||
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
||||
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
||||
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
||||
}
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1):
|
||||
"3x3 convolution with padding"
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
||||
super(BasicBlock, self).__init__()
|
||||
self.conv1 = conv3x3(inplanes, planes, stride)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.conv2 = conv3x3(planes, planes)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class IBN(nn.Module):
|
||||
def __init__(self, planes):
|
||||
super(IBN, self).__init__()
|
||||
half1 = int(planes/2)
|
||||
self.half = half1
|
||||
half2 = planes - half1
|
||||
self.IN = nn.InstanceNorm2d(half1, affine=True)
|
||||
self.BN = nn.BatchNorm2d(half2)
|
||||
|
||||
def forward(self, x):
|
||||
split = torch.split(x, self.half, 1)
|
||||
out1 = self.IN(split[0].contiguous())
|
||||
out2 = self.BN(split[1].contiguous())
|
||||
out = torch.cat((out1, out2), 1)
|
||||
return out
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, ibn=False, stride=1, downsample=None):
|
||||
super(Bottleneck, self).__init__()
|
||||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
||||
if ibn:
|
||||
self.bn1 = IBN(planes)
|
||||
else:
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNet(nn.Module):
|
||||
"""Residual network + IBN layer.
|
||||
|
||||
Reference:
|
||||
- He et al. Deep Residual Learning for Image Recognition. CVPR 2016.
|
||||
- Pan et al. Two at Once: Enhancing Learning and Generalization
|
||||
Capacities via IBN-Net. ECCV 2018.
|
||||
"""
|
||||
|
||||
def __init__(self, block, layers, num_classes=1000, loss='softmax',
|
||||
fc_dims=None, dropout_p=None, **kwargs):
|
||||
scale = 64
|
||||
self.inplanes = scale
|
||||
super(ResNet, self).__init__()
|
||||
self.loss = loss
|
||||
self.feature_dim = scale * 8 * block.expansion
|
||||
|
||||
self.conv1 = nn.Conv2d(3, scale, kernel_size=7, stride=2, padding=3,
|
||||
bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(scale)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, scale, layers[0])
|
||||
self.layer2 = self._make_layer(block, scale*2, layers[1], stride=2)
|
||||
self.layer3 = self._make_layer(block, scale*4, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, scale*8, layers[3], stride=2)
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.fc = self._construct_fc_layer(fc_dims, scale * 8 * block.expansion, dropout_p)
|
||||
self.classifier = nn.Linear(self.feature_dim, num_classes)
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.data.normal_(0, math.sqrt(2. / n))
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
elif isinstance(m, nn.InstanceNorm2d):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2d(self.inplanes, planes * block.expansion,
|
||||
kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
|
||||
layers = []
|
||||
ibn = True
|
||||
if planes == 512:
|
||||
ibn = False
|
||||
layers.append(block(self.inplanes, planes, ibn, stride, downsample))
|
||||
self.inplanes = planes * block.expansion
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, ibn))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
|
||||
"""Constructs fully connected layer
|
||||
|
||||
Args:
|
||||
fc_dims (list or tuple): dimensions of fc layers, if None, no fc layers are constructed
|
||||
input_dim (int): input dimension
|
||||
dropout_p (float): dropout probability, if None, dropout is unused
|
||||
"""
|
||||
if fc_dims is None:
|
||||
self.feature_dim = input_dim
|
||||
return None
|
||||
|
||||
assert isinstance(fc_dims, (list, tuple)), 'fc_dims must be either list or tuple, but got {}'.format(type(fc_dims))
|
||||
|
||||
layers = []
|
||||
for dim in fc_dims:
|
||||
layers.append(nn.Linear(input_dim, dim))
|
||||
layers.append(nn.BatchNorm1d(dim))
|
||||
layers.append(nn.ReLU(inplace=True))
|
||||
if dropout_p is not None:
|
||||
layers.append(nn.Dropout(p=dropout_p))
|
||||
input_dim = dim
|
||||
|
||||
self.feature_dim = fc_dims[-1]
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def featuremaps(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x = self.maxpool(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
f = self.featuremaps(x)
|
||||
v = self.avgpool(f)
|
||||
v = v.view(v.size(0), -1)
|
||||
if self.fc is not None:
|
||||
v = self.fc(v)
|
||||
if not self.training:
|
||||
return v
|
||||
y = self.classifier(v)
|
||||
if self.loss == 'softmax':
|
||||
return y
|
||||
elif self.loss == 'triplet':
|
||||
return y, v
|
||||
else:
|
||||
raise KeyError("Unsupported loss: {}".format(self.loss))
|
||||
|
||||
|
||||
def init_pretrained_weights(model, model_url):
|
||||
"""Initializes model with pretrained weights.
|
||||
|
||||
Layers that don't match with pretrained layers in name or size are kept unchanged.
|
||||
"""
|
||||
pretrain_dict = model_zoo.load_url(model_url)
|
||||
model_dict = model.state_dict()
|
||||
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
|
||||
model_dict.update(pretrain_dict)
|
||||
model.load_state_dict(model_dict)
|
||||
|
||||
|
||||
def resnet50_ibn_a(num_classes, loss='softmax', pretrained=False, **kwargs):
|
||||
model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, loss=loss, **kwargs)
|
||||
if pretrained:
|
||||
init_pretrained_weights(model, model_urls['resnet50'])
|
||||
return model
|
|
@ -0,0 +1,233 @@
|
|||
"""
|
||||
Credit to https://github.com/XingangPan/IBN-Net.
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
||||
__all__ = ['resnet50_ibn_b']
|
||||
|
||||
import torch.nn as nn
|
||||
import math
|
||||
import torch.utils.model_zoo as model_zoo
|
||||
|
||||
|
||||
model_urls = {
|
||||
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
||||
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
||||
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
||||
}
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1):
|
||||
"3x3 convolution with padding"
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
||||
super(BasicBlock, self).__init__()
|
||||
self.conv1 = conv3x3(inplanes, planes, stride)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.conv2 = conv3x3(planes, planes)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None, IN=False):
|
||||
super(Bottleneck, self).__init__()
|
||||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||||
self.IN = None
|
||||
if IN:
|
||||
self.IN = nn.InstanceNorm2d(planes * 4, affine=True)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
if self.IN is not None:
|
||||
out = self.IN(out)
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNet(nn.Module):
|
||||
"""Residual network + IBN layer.
|
||||
|
||||
Reference:
|
||||
- He et al. Deep Residual Learning for Image Recognition. CVPR 2016.
|
||||
- Pan et al. Two at Once: Enhancing Learning and Generalization
|
||||
Capacities via IBN-Net. ECCV 2018.
|
||||
"""
|
||||
|
||||
def __init__(self, block, layers, num_classes=1000, loss='softmax',
|
||||
fc_dims=None, dropout_p=None, **kwargs):
|
||||
scale = 64
|
||||
self.inplanes = scale
|
||||
super(ResNet, self).__init__()
|
||||
self.loss = loss
|
||||
self.feature_dim = scale * 8 * block.expansion
|
||||
|
||||
self.conv1 = nn.Conv2d(3, scale, kernel_size=7, stride=2, padding=3,
|
||||
bias=False)
|
||||
self.bn1 = nn.InstanceNorm2d(scale, affine=True)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, scale, layers[0], stride=1, IN=True)
|
||||
self.layer2 = self._make_layer(block, scale*2, layers[1], stride=2, IN=True)
|
||||
self.layer3 = self._make_layer(block, scale*4, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, scale*8, layers[3], stride=2)
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.fc = self._construct_fc_layer(fc_dims, scale * 8 * block.expansion, dropout_p)
|
||||
self.classifier = nn.Linear(self.feature_dim, num_classes)
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.data.normal_(0, math.sqrt(2. / n))
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
elif isinstance(m, nn.InstanceNorm2d):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1, IN=False):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2d(self.inplanes, planes * block.expansion,
|
||||
kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, downsample))
|
||||
self.inplanes = planes * block.expansion
|
||||
for i in range(1, blocks-1):
|
||||
layers.append(block(self.inplanes, planes))
|
||||
layers.append(block(self.inplanes, planes, IN=IN))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
|
||||
"""Constructs fully connected layer
|
||||
|
||||
Args:
|
||||
fc_dims (list or tuple): dimensions of fc layers, if None, no fc layers are constructed
|
||||
input_dim (int): input dimension
|
||||
dropout_p (float): dropout probability, if None, dropout is unused
|
||||
"""
|
||||
if fc_dims is None:
|
||||
self.feature_dim = input_dim
|
||||
return None
|
||||
|
||||
assert isinstance(fc_dims, (list, tuple)), 'fc_dims must be either list or tuple, but got {}'.format(type(fc_dims))
|
||||
|
||||
layers = []
|
||||
for dim in fc_dims:
|
||||
layers.append(nn.Linear(input_dim, dim))
|
||||
layers.append(nn.BatchNorm1d(dim))
|
||||
layers.append(nn.ReLU(inplace=True))
|
||||
if dropout_p is not None:
|
||||
layers.append(nn.Dropout(p=dropout_p))
|
||||
input_dim = dim
|
||||
|
||||
self.feature_dim = fc_dims[-1]
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def featuremaps(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x = self.maxpool(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
f = self.featuremaps(x)
|
||||
v = self.avgpool(f)
|
||||
v = v.view(v.size(0), -1)
|
||||
if self.fc is not None:
|
||||
v = self.fc(v)
|
||||
if not self.training:
|
||||
return v
|
||||
y = self.classifier(v)
|
||||
if self.loss == 'softmax':
|
||||
return y
|
||||
elif self.loss == 'triplet':
|
||||
return y, v
|
||||
else:
|
||||
raise KeyError("Unsupported loss: {}".format(self.loss))
|
||||
|
||||
|
||||
def init_pretrained_weights(model, model_url):
|
||||
"""Initializes model with pretrained weights.
|
||||
|
||||
Layers that don't match with pretrained layers in name or size are kept unchanged.
|
||||
"""
|
||||
pretrain_dict = model_zoo.load_url(model_url)
|
||||
model_dict = model.state_dict()
|
||||
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
|
||||
model_dict.update(pretrain_dict)
|
||||
model.load_state_dict(model_dict)
|
||||
|
||||
|
||||
def resnet50_ibn_b(num_classes, loss='softmax', pretrained=False, **kwargs):
|
||||
model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, loss=loss, **kwargs)
|
||||
if pretrained:
|
||||
init_pretrained_weights(model, model_urls['resnet50'])
|
||||
return model
|
Loading…
Reference in New Issue