update readme
parent
44bc7b25ff
commit
b47c4fa235
18
README.md
18
README.md
|
@ -34,7 +34,7 @@ cd deep-person-reid/
|
||||||
mkdir data/
|
mkdir data/
|
||||||
```
|
```
|
||||||
|
|
||||||
Please follow the instructions below to prepare each dataset.
|
If you wanna store datasets in another directory, you need to specify `--root path_to_your/data` when running the training code. Please follow the instructions below to prepare each dataset.
|
||||||
|
|
||||||
**Market1501** [7]:
|
**Market1501** [7]:
|
||||||
1. Download dataset to `data/` from http://www.liangzheng.org/Project/project_reid.html.
|
1. Download dataset to `data/` from http://www.liangzheng.org/Project/project_reid.html.
|
||||||
|
@ -71,6 +71,21 @@ dukemtmc-reid/
|
||||||
```
|
```
|
||||||
3. Use `-d dukemtmcreid` when running the training code.
|
3. Use `-d dukemtmcreid` when running the training code.
|
||||||
|
|
||||||
|
|
||||||
|
**MSMT17** [22]:
|
||||||
|
1. Create a directory named `msmt17/` under `data/`.
|
||||||
|
2. Download dataset `MSMT17_V1.tar.gz` to `data/msmt17/` from http://www.pkuvmc.com/publications/msmt17.html. Extract the file under the same folder, so you will have
|
||||||
|
```
|
||||||
|
msmt17/
|
||||||
|
MSMT17_V1.tar.gz
|
||||||
|
MSMT17_V1/
|
||||||
|
train/
|
||||||
|
test/
|
||||||
|
list_train.txt
|
||||||
|
... (totally six .txt files)
|
||||||
|
```
|
||||||
|
3. Use `-d msmt17` when running the training code.
|
||||||
|
|
||||||
**MARS** [8]:
|
**MARS** [8]:
|
||||||
1. Create a directory named `mars/` under `data/`.
|
1. Create a directory named `mars/` under `data/`.
|
||||||
2. Download dataset to `data/mars/` from http://www.liangzheng.com.cn/Project/project_mars.html.
|
2. Download dataset to `data/mars/` from http://www.liangzheng.com.cn/Project/project_mars.html.
|
||||||
|
@ -273,3 +288,4 @@ Of course, you can pass `model.classifier.parameters()` to optimizer if you only
|
||||||
[19] [Sandler et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks. CVPR 2018.](https://arxiv.org/abs/1801.04381) <br />
|
[19] [Sandler et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks. CVPR 2018.](https://arxiv.org/abs/1801.04381) <br />
|
||||||
[20] [Zhang et al. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. CVPR 2018.](https://arxiv.org/abs/1707.01083) <br />
|
[20] [Zhang et al. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. CVPR 2018.](https://arxiv.org/abs/1707.01083) <br />
|
||||||
[21] [Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. CVPR 2017.](https://arxiv.org/abs/1610.02357) <br />
|
[21] [Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. CVPR 2017.](https://arxiv.org/abs/1610.02357) <br />
|
||||||
|
[22] [Wei et al. Person Transfer GAN to Bridge Domain Gap for Person Re-Identification. CVPR 2018.](http://www.pkuvmc.com/publications/msmt17.html) <br />
|
||||||
|
|
Loading…
Reference in New Issue