pull/119/head
KaiyangZhou 2018-10-28 11:16:42 +00:00
parent f77b9ada10
commit bfba6389d6
2 changed files with 235 additions and 0 deletions

View File

@ -16,6 +16,7 @@ from .squeezenet import *
from .mudeep import *
from .hacnn import *
from .pcb import *
__model_factory = {
@ -45,6 +46,8 @@ __model_factory = {
# reid-specific models
'mudeep': MuDeep,
'hacnn': HACNN,
'pcb_p6': pcb_p6,
'pcb_p4': pcb_p4,
}

View File

@ -0,0 +1,232 @@
from __future__ import absolute_import
from __future__ import division
import torch
from torch import nn
from torch.nn import functional as F
import torchvision
import torch.utils.model_zoo as model_zoo
__all__ = ['pcb_p6', 'pcb_p4']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class DimReduceLayer(nn.Module):
def __init__(self, in_channels, out_channels, nonlinear):
super(DimReduceLayer, self).__init__()
layers = []
layers.append(nn.Conv2d(in_channels, out_channels, 1, stride=1, padding=0, bias=False))
layers.append(nn.BatchNorm2d(out_channels))
if nonlinear == 'relu':
layers.append(nn.ReLU(inplace=True))
elif nonlinear == 'leakyrelu':
layers.append(nn.LeakyReLU(0.1))
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
class PCB(nn.Module):
"""
Part-based Convolutional Baseline
Reference:
Sun et al. Beyond Part Models: Person Retrieval with Refined
Part Pooling (and A Strong Convolutional Baseline). ECCV 2018.
"""
def __init__(self, num_classes, loss, block, layers,
parts=6,
reduced_dim=256,
nonlinear='relu',
**kwargs):
self.inplanes = 64
super(PCB, self).__init__()
self.loss = loss
self.parts = parts
self.feature_dim = 512 * block.expansion
# backbone network
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1)
# pcb layers
self.parts_avgpool = nn.AdaptiveAvgPool2d((self.parts, 1))
self.dropout = nn.Dropout(p=0.5)
self.conv5 = DimReduceLayer(512 * block.expansion, reduced_dim, nonlinear=nonlinear)
self.feature_dim = reduced_dim
self.classifier = nn.ModuleList([nn.Linear(self.feature_dim, num_classes) for _ in range(self.parts)])
self._init_params()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def featuremaps(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def forward(self, x):
f = self.featuremaps(x)
v_g = self.parts_avgpool(f)
v_h = self.conv5(self.dropout(v_g))
if not self.training:
v_g = F.normalize(v_g, p=2, dim=1)
return v_g.view(v_g.size(0), -1)
y = []
for i in range(self.parts):
v_h_i = v_h[:, :, i, :]
v_h_i = v_h_i.view(v_h_i.size(0), -1)
y_i = self.classifier[i](v_h_i)
y.append(y_i)
if self.loss == {'xent'}:
return y
elif self.loss == {'xent', 'htri'}:
v_g = F.normalize(v_g, p=2, dim=1)
return y, v_g.view(v_g.size(0), -1)
else:
raise KeyError("Unsupported loss: {}".format(self.loss))
def init_pretrained_weights(model, model_url):
"""
Initialize model with pretrained weights.
Layers that don't match with pretrained layers in name or size are kept unchanged.
"""
pretrain_dict = model_zoo.load_url(model_url)
model_dict = model.state_dict()
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
print("Initialized model with pretrained weights from {}".format(model_url))
def pcb_p6(num_classes, loss, pretrained='imagenet', **kwargs):
model = PCB(
num_classes=num_classes,
loss=loss,
block=Bottleneck,
layers=[3, 4, 6, 3],
last_stride=1,
parts=6,
reduced_dim=256,
nonlinear='relu',
**kwargs
)
if pretrained == 'imagenet':
init_pretrained_weights(model, model_urls['resnet50'])
return model
def pcb_p4(num_classes, loss, pretrained='imagenet', **kwargs):
model = PCB(
num_classes=num_classes,
loss=loss,
block=Bottleneck,
layers=[3, 4, 6, 3],
last_stride=1,
parts=4,
reduced_dim=256,
nonlinear='relu',
**kwargs
)
if pretrained == 'imagenet':
init_pretrained_weights(model, model_urls['resnet50'])
return model