add pcb
parent
f77b9ada10
commit
bfba6389d6
|
@ -16,6 +16,7 @@ from .squeezenet import *
|
|||
|
||||
from .mudeep import *
|
||||
from .hacnn import *
|
||||
from .pcb import *
|
||||
|
||||
|
||||
__model_factory = {
|
||||
|
@ -45,6 +46,8 @@ __model_factory = {
|
|||
# reid-specific models
|
||||
'mudeep': MuDeep,
|
||||
'hacnn': HACNN,
|
||||
'pcb_p6': pcb_p6,
|
||||
'pcb_p4': pcb_p4,
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,232 @@
|
|||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
import torchvision
|
||||
import torch.utils.model_zoo as model_zoo
|
||||
|
||||
|
||||
__all__ = ['pcb_p6', 'pcb_p4']
|
||||
|
||||
|
||||
model_urls = {
|
||||
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
||||
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
||||
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
||||
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
||||
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
||||
}
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
||||
super(Bottleneck, self).__init__()
|
||||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class DimReduceLayer(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, nonlinear):
|
||||
super(DimReduceLayer, self).__init__()
|
||||
layers = []
|
||||
layers.append(nn.Conv2d(in_channels, out_channels, 1, stride=1, padding=0, bias=False))
|
||||
layers.append(nn.BatchNorm2d(out_channels))
|
||||
|
||||
if nonlinear == 'relu':
|
||||
layers.append(nn.ReLU(inplace=True))
|
||||
elif nonlinear == 'leakyrelu':
|
||||
layers.append(nn.LeakyReLU(0.1))
|
||||
|
||||
self.layers = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
|
||||
|
||||
class PCB(nn.Module):
|
||||
"""
|
||||
Part-based Convolutional Baseline
|
||||
|
||||
Reference:
|
||||
Sun et al. Beyond Part Models: Person Retrieval with Refined
|
||||
Part Pooling (and A Strong Convolutional Baseline). ECCV 2018.
|
||||
"""
|
||||
def __init__(self, num_classes, loss, block, layers,
|
||||
parts=6,
|
||||
reduced_dim=256,
|
||||
nonlinear='relu',
|
||||
**kwargs):
|
||||
self.inplanes = 64
|
||||
super(PCB, self).__init__()
|
||||
self.loss = loss
|
||||
self.parts = parts
|
||||
self.feature_dim = 512 * block.expansion
|
||||
|
||||
# backbone network
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(64)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, 64, layers[0])
|
||||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
||||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, 512, layers[3], stride=1)
|
||||
|
||||
# pcb layers
|
||||
self.parts_avgpool = nn.AdaptiveAvgPool2d((self.parts, 1))
|
||||
self.dropout = nn.Dropout(p=0.5)
|
||||
self.conv5 = DimReduceLayer(512 * block.expansion, reduced_dim, nonlinear=nonlinear)
|
||||
self.feature_dim = reduced_dim
|
||||
self.classifier = nn.ModuleList([nn.Linear(self.feature_dim, num_classes) for _ in range(self.parts)])
|
||||
|
||||
self._init_params()
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2d(self.inplanes, planes * block.expansion,
|
||||
kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, downsample))
|
||||
self.inplanes = planes * block.expansion
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def _init_params(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.BatchNorm1d):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, 0, 0.01)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def featuremaps(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x = self.maxpool(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
f = self.featuremaps(x)
|
||||
v_g = self.parts_avgpool(f)
|
||||
v_h = self.conv5(self.dropout(v_g))
|
||||
|
||||
if not self.training:
|
||||
v_g = F.normalize(v_g, p=2, dim=1)
|
||||
return v_g.view(v_g.size(0), -1)
|
||||
|
||||
y = []
|
||||
for i in range(self.parts):
|
||||
v_h_i = v_h[:, :, i, :]
|
||||
v_h_i = v_h_i.view(v_h_i.size(0), -1)
|
||||
y_i = self.classifier[i](v_h_i)
|
||||
y.append(y_i)
|
||||
|
||||
if self.loss == {'xent'}:
|
||||
return y
|
||||
elif self.loss == {'xent', 'htri'}:
|
||||
v_g = F.normalize(v_g, p=2, dim=1)
|
||||
return y, v_g.view(v_g.size(0), -1)
|
||||
else:
|
||||
raise KeyError("Unsupported loss: {}".format(self.loss))
|
||||
|
||||
|
||||
def init_pretrained_weights(model, model_url):
|
||||
"""
|
||||
Initialize model with pretrained weights.
|
||||
Layers that don't match with pretrained layers in name or size are kept unchanged.
|
||||
"""
|
||||
pretrain_dict = model_zoo.load_url(model_url)
|
||||
model_dict = model.state_dict()
|
||||
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
|
||||
model_dict.update(pretrain_dict)
|
||||
model.load_state_dict(model_dict)
|
||||
print("Initialized model with pretrained weights from {}".format(model_url))
|
||||
|
||||
|
||||
def pcb_p6(num_classes, loss, pretrained='imagenet', **kwargs):
|
||||
model = PCB(
|
||||
num_classes=num_classes,
|
||||
loss=loss,
|
||||
block=Bottleneck,
|
||||
layers=[3, 4, 6, 3],
|
||||
last_stride=1,
|
||||
parts=6,
|
||||
reduced_dim=256,
|
||||
nonlinear='relu',
|
||||
**kwargs
|
||||
)
|
||||
if pretrained == 'imagenet':
|
||||
init_pretrained_weights(model, model_urls['resnet50'])
|
||||
return model
|
||||
|
||||
|
||||
def pcb_p4(num_classes, loss, pretrained='imagenet', **kwargs):
|
||||
model = PCB(
|
||||
num_classes=num_classes,
|
||||
loss=loss,
|
||||
block=Bottleneck,
|
||||
layers=[3, 4, 6, 3],
|
||||
last_stride=1,
|
||||
parts=4,
|
||||
reduced_dim=256,
|
||||
nonlinear='relu',
|
||||
**kwargs
|
||||
)
|
||||
if pretrained == 'imagenet':
|
||||
init_pretrained_weights(model, model_urls['resnet50'])
|
||||
return model
|
Loading…
Reference in New Issue