add cvpr19 links
parent
ba1b36d0da
commit
c4ea336654
|
@ -195,6 +195,7 @@
|
|||
<div class="section" id="cvpr-2019">
|
||||
<h3>CVPR 2019<a class="headerlink" href="#cvpr-2019" title="Permalink to this headline">¶</a></h3>
|
||||
<ul class="simple">
|
||||
<li>Patch-based Discriminative Feature Learning for Unsupervised Person Re-identification. [<a class="reference external" href="https://kovenyu.com/papers/2019_CVPR_PEDAL.pdf">paper</a>] [<a class="reference external" href="https://github.com/QizeYang/PAUL">code</a>]</li>
|
||||
<li>Joint Discriminative and Generative Learning for Person Re-identification. [<a class="reference external" href="https://arxiv.org/abs/1904.07223">paper</a>][<a class="reference external" href="https://github.com/NVlabs/DG-Net">code</a>]</li>
|
||||
<li>Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification. [<a class="reference external" href="https://arxiv.org/abs/1904.01990">paper</a>][<a class="reference external" href="https://github.com/zhunzhong07/ECN">code</a>]</li>
|
||||
<li>Dissecting Person Re-identification from the Viewpoint of Viewpoint. [<a class="reference external" href="https://arxiv.org/abs/1812.02162">paper</a>][<a class="reference external" href="https://github.com/sxzrt/Dissecting-Person-Re-ID-from-the-Viewpoint-of-Viewpoint">code</a>]</li>
|
||||
|
|
|
@ -311,13 +311,17 @@
|
|||
<span class="sd"> norm_std (list): normalization standard deviation values. Default is</span>
|
||||
<span class="sd"> ImageNet standard deviation values.</span>
|
||||
<span class="sd"> """</span>
|
||||
<span class="k">if</span> <span class="n">transforms</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
|
||||
<span class="n">transforms</span> <span class="o">=</span> <span class="p">[]</span>
|
||||
|
||||
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">transforms</span><span class="p">,</span> <span class="nb">str</span><span class="p">):</span>
|
||||
<span class="n">transforms</span> <span class="o">=</span> <span class="p">[</span><span class="n">transforms</span><span class="p">]</span>
|
||||
|
||||
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">transforms</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
|
||||
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'transforms must be a list of strings, but found to be </span><span class="si">{}</span><span class="s1">'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">transforms</span><span class="p">)))</span>
|
||||
|
||||
<span class="n">transforms</span> <span class="o">=</span> <span class="p">[</span><span class="n">t</span><span class="o">.</span><span class="n">lower</span><span class="p">()</span> <span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="n">transforms</span><span class="p">]</span>
|
||||
|
||||
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">transforms</span><span class="p">)</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span>
|
||||
<span class="n">transforms</span> <span class="o">=</span> <span class="p">[</span><span class="n">t</span><span class="o">.</span><span class="n">lower</span><span class="p">()</span> <span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="n">transforms</span><span class="p">]</span>
|
||||
|
||||
<span class="n">normalize</span> <span class="o">=</span> <span class="n">Normalize</span><span class="p">(</span><span class="n">mean</span><span class="o">=</span><span class="n">norm_mean</span><span class="p">,</span> <span class="n">std</span><span class="o">=</span><span class="n">norm_std</span><span class="p">)</span>
|
||||
|
||||
|
|
|
@ -10,6 +10,7 @@ Here is a collection of ReID-related research with links to papers and code. You
|
|||
- **[ArXiv](#arxiv)**
|
||||
|
||||
### CVPR 2019
|
||||
- Patch-based Discriminative Feature Learning for Unsupervised Person Re-identification. [[paper](https://kovenyu.com/papers/2019_CVPR_PEDAL.pdf)] [[code](https://github.com/QizeYang/PAUL)]
|
||||
- Joint Discriminative and Generative Learning for Person Re-identification. [[paper](https://arxiv.org/abs/1904.07223)][[code](https://github.com/NVlabs/DG-Net)]
|
||||
- Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification. [[paper](https://arxiv.org/abs/1904.01990)][[code](https://github.com/zhunzhong07/ECN)]
|
||||
- Dissecting Person Re-identification from the Viewpoint of Viewpoint. [[paper](https://arxiv.org/abs/1812.02162)][[code](https://github.com/sxzrt/Dissecting-Person-Re-ID-from-the-Viewpoint-of-Viewpoint)]
|
||||
|
|
Loading…
Reference in New Issue