add resnext50_32x4d_fc512
parent
b065f130d0
commit
d7755cfd16
|
@ -25,6 +25,7 @@ __model_factory = {
|
|||
'resnet50': resnet50,
|
||||
'resnet50_fc512': resnet50_fc512,
|
||||
'resnext50_32x4d': resnext50_32x4d,
|
||||
'resnext50_32x4d_fc512': resnext50_32x4d_fc512,
|
||||
'resnext101_32x4d': resnext101_32x4d,
|
||||
'se_resnet50': se_resnet50,
|
||||
'se_resnet50_fc512': se_resnet50_fc512,
|
||||
|
|
|
@ -10,7 +10,7 @@ import torchvision
|
|||
import torch.utils.model_zoo as model_zoo
|
||||
|
||||
|
||||
__all__ = ['resnext50_32x4d', 'resnext101_32x4d']
|
||||
__all__ = ['resnext50_32x4d', 'resnext50_32x4d_fc512', 'resnext101_32x4d']
|
||||
|
||||
|
||||
model_urls = {
|
||||
|
@ -219,6 +219,24 @@ def resnext50_32x4d(num_classes, loss, pretrained='imagenet', **kwargs):
|
|||
return model
|
||||
|
||||
|
||||
def resnext50_32x4d_fc512(num_classes, loss, pretrained='imagenet', **kwargs):
|
||||
model = ResNeXt(
|
||||
num_classes=num_classes,
|
||||
loss=loss,
|
||||
block=ResNeXtBottleneck,
|
||||
layers=[3, 4, 6, 3],
|
||||
groups=32,
|
||||
base_width=4,
|
||||
last_stride=1,
|
||||
fc_dims=[512],
|
||||
dropout_p=None,
|
||||
**kwargs
|
||||
)
|
||||
if pretrained == 'imagenet':
|
||||
init_pretrained_weights(model, model_urls['resnext50_32x4d'])
|
||||
return model
|
||||
|
||||
|
||||
def resnext101_32x4d(num_classes, loss, pretrained='imagenet', **kwargs):
|
||||
model = ResNeXt(
|
||||
num_classes=num_classes,
|
||||
|
|
Loading…
Reference in New Issue