update readme

pull/218/head
KaiyangZhou 2019-08-22 23:18:56 +01:00
parent a40ba19207
commit e0eff2b84e
1 changed files with 15 additions and 42 deletions

View File

@ -15,7 +15,7 @@ It features:
- implementations of state-of-the-art deep reid models
- access to pretrained reid models
- advanced training techniques
- visualization tools
- visualization tools (tensorboard, ranks, etc.)
Documentation: https://kaiyangzhou.github.io/deep-person-reid/.
@ -28,67 +28,41 @@ Model zoo: https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.
Installation
---------------
The code works with both python2 and python3.
We recommend using `conda <https://www.anaconda.com/distribution/>`_ to manage the packages.
Option 1
^^^^^^^^^^^^
1. Install PyTorch and torchvision following the `official instructions <https://pytorch.org/>`_.
2. Clone ``deep-person-reid`` to your preferred directory
1. Clone ``deep-person-reid`` to your preferred directory.
.. code-block:: bash
$ git clone https://github.com/KaiyangZhou/deep-person-reid.git
3. :code:`cd` to :code:`deep-person-reid` and install dependencies
.. code-block:: bash
$ cd deep-person-reid/
$ pip install -r requirements.txt
4. Install ``torchreid``
.. code-block:: bash
$ python setup.py install # or python3
$ # If you wanna modify the source code without
$ # the need to rebuild it, you can do
$ # python setup.py develop
Option 2 (with conda)
^^^^^^^^^^^^^^^^^^^^^^^^
We also provide an environment.yml file for easy setup with conda.
1. Clone ``deep-person-reid`` to your preferred directory
.. code-block:: bash
$ git clone https://github.com/KaiyangZhou/deep-person-reid.git
2. :code:`cd` to :code:`deep-person-reid` and create an environment (named ``torchreid``)
2. Create a conda environment (the default name is ``torchreid``).
.. code-block:: bash
$ cd deep-person-reid/
$ conda env create -f environment.yml
$ conda activate torchreid
In doing so, the dependencies will be automatically installed.
Do check whether ``which python`` and ``which pip`` point to the right path.
3. Install PyTorch and torchvision (select the proper cuda version to suit your machine)
3. Install tensorboard.
.. code-block:: bash
$ pip install tb-nightly
4. Install PyTorch and torchvision (select the proper cuda version to suit your machine)
.. code-block:: bash
$ conda activate torchreid
$ conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
4. Install ``torchreid``
5. Install ``torchreid``
.. code-block:: bash
$ python setup.py install
$ # If you wanna modify the source code without
$ # the need to rebuild it, you can do
$ # python setup.py develop
$ python setup.py develop
Get started: 30 seconds to Torchreid
@ -258,4 +232,3 @@ If you find this code useful to your research, please cite the following publica
journal={arXiv preprint arXiv:1905.00953},
year={2019}
}