rm old resnext
parent
97ee4b423b
commit
fd88366d22
|
@ -1,238 +0,0 @@
|
|||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
||||
__all__ = ['resnext50_32x4d', 'resnext50_32x4d_fc512']
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
import torchvision
|
||||
import torch.utils.model_zoo as model_zoo
|
||||
|
||||
|
||||
model_urls = {
|
||||
# top1 = 76.3
|
||||
'resnext50_32x4d': 'http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/imagenet-pretrained/resnext50_32x4d-453b60f8.pth',
|
||||
}
|
||||
|
||||
|
||||
class ResNeXtBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, groups=32, base_width=4, stride=1, downsample=None):
|
||||
super(ResNeXtBottleneck, self).__init__()
|
||||
width = int(math.floor(planes * (base_width / 64.)) * groups)
|
||||
self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False, stride=1)
|
||||
self.bn1 = nn.BatchNorm2d(width)
|
||||
self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(width)
|
||||
self.conv3 = nn.Conv2d(width, planes * self.expansion, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNeXt(nn.Module):
|
||||
"""ResNeXt.
|
||||
|
||||
Reference:
|
||||
Xie et al. Aggregated Residual Transformations for Deep
|
||||
Neural Networks. CVPR 2017.
|
||||
|
||||
Public keys:
|
||||
- ``resnext50_32x4d``: ResNeXt50 (groups=32, width=4).
|
||||
- ``resnext50_32x4d_fc512`` ResNeXt50 (groups=32, width=4) + FC.
|
||||
"""
|
||||
|
||||
def __init__(self, num_classes, loss, block, layers,
|
||||
groups=32,
|
||||
base_width=4,
|
||||
last_stride=2,
|
||||
fc_dims=None,
|
||||
dropout_p=None,
|
||||
**kwargs):
|
||||
self.inplanes = 64
|
||||
super(ResNeXt, self).__init__()
|
||||
self.loss = loss
|
||||
self.feature_dim = 512 * block.expansion
|
||||
|
||||
# backbone network
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(64)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, 64, layers[0], groups, base_width)
|
||||
self.layer2 = self._make_layer(block, 128, layers[1], groups, base_width, stride=2)
|
||||
self.layer3 = self._make_layer(block, 256, layers[2], groups, base_width, stride=2)
|
||||
self.layer4 = self._make_layer(block, 512, layers[3], groups, base_width, stride=last_stride)
|
||||
|
||||
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
|
||||
self.fc = self._construct_fc_layer(fc_dims, 512 * block.expansion, dropout_p)
|
||||
self.classifier = nn.Linear(self.feature_dim, num_classes)
|
||||
|
||||
self._init_params()
|
||||
|
||||
def _make_layer(self, block, planes, blocks, groups, base_width, stride=1):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2d(self.inplanes, planes * block.expansion,
|
||||
kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, groups, base_width, stride, downsample))
|
||||
self.inplanes = planes * block.expansion
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, groups, base_width))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
|
||||
"""Constructs fully connected layer.
|
||||
|
||||
Args:
|
||||
fc_dims (list or tuple): dimensions of fc layers, if None, no fc layers are constructed
|
||||
input_dim (int): input dimension
|
||||
dropout_p (float): dropout probability, if None, dropout is unused
|
||||
"""
|
||||
if fc_dims is None:
|
||||
self.feature_dim = input_dim
|
||||
return None
|
||||
|
||||
assert isinstance(fc_dims, (list, tuple)), 'fc_dims must be either list or tuple, but got {}'.format(type(fc_dims))
|
||||
|
||||
layers = []
|
||||
for dim in fc_dims:
|
||||
layers.append(nn.Linear(input_dim, dim))
|
||||
layers.append(nn.BatchNorm1d(dim))
|
||||
layers.append(nn.ReLU(inplace=True))
|
||||
if dropout_p is not None:
|
||||
layers.append(nn.Dropout(p=dropout_p))
|
||||
input_dim = dim
|
||||
|
||||
self.feature_dim = fc_dims[-1]
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def _init_params(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.BatchNorm1d):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, 0, 0.01)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def featuremaps(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x = self.maxpool(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
f = self.featuremaps(x)
|
||||
v = self.global_avgpool(f)
|
||||
v = v.view(v.size(0), -1)
|
||||
|
||||
if self.fc is not None:
|
||||
v = self.fc(v)
|
||||
|
||||
if not self.training:
|
||||
return v
|
||||
|
||||
y = self.classifier(v)
|
||||
|
||||
if self.loss == 'softmax':
|
||||
return y
|
||||
elif self.loss == 'triplet':
|
||||
return y, v
|
||||
else:
|
||||
raise KeyError("Unsupported loss: {}".format(self.loss))
|
||||
|
||||
|
||||
def init_pretrained_weights(model, model_url):
|
||||
"""Initializes model with pretrained weights.
|
||||
|
||||
Layers that don't match with pretrained layers in name or size are kept unchanged.
|
||||
"""
|
||||
pretrain_dict = model_zoo.load_url(model_url)
|
||||
model_dict = model.state_dict()
|
||||
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
|
||||
model_dict.update(pretrain_dict)
|
||||
model.load_state_dict(model_dict)
|
||||
|
||||
|
||||
def resnext50_32x4d(num_classes, loss='softmax', pretrained=True, **kwargs):
|
||||
model = ResNeXt(
|
||||
num_classes=num_classes,
|
||||
loss=loss,
|
||||
block=ResNeXtBottleneck,
|
||||
layers=[3, 4, 6, 3],
|
||||
groups=32,
|
||||
base_width=4,
|
||||
last_stride=2,
|
||||
fc_dims=None,
|
||||
dropout_p=None,
|
||||
**kwargs
|
||||
)
|
||||
if pretrained:
|
||||
init_pretrained_weights(model, model_urls['resnext50_32x4d'])
|
||||
return model
|
||||
|
||||
|
||||
def resnext50_32x4d_fc512(num_classes, loss='softmax', pretrained=True, **kwargs):
|
||||
model = ResNeXt(
|
||||
num_classes=num_classes,
|
||||
loss=loss,
|
||||
block=ResNeXtBottleneck,
|
||||
layers=[3, 4, 6, 3],
|
||||
groups=32,
|
||||
base_width=4,
|
||||
last_stride=1,
|
||||
fc_dims=[512],
|
||||
dropout_p=None,
|
||||
**kwargs
|
||||
)
|
||||
if pretrained:
|
||||
init_pretrained_weights(model, model_urls['resnext50_32x4d'])
|
||||
return model
|
Loading…
Reference in New Issue