from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import time
import datetime
import torch
import torchreid
from torchreid.engine import engine
from torchreid.losses import CrossEntropyLoss
from torchreid.utils import AverageMeter, open_specified_layers, open_all_layers
from torchreid import metrics
[docs]class ImageSoftmaxEngine(engine.Engine):
"""Softmax-loss engine for image-reid.
Args:
datamanager (DataManager): an instance of ``torchreid.data.ImageDataManager``
or ``torchreid.data.VideoDataManager``.
model (nn.Module): model instance.
optimizer (Optimizer): an Optimizer.
scheduler (LRScheduler, optional): if None, no learning rate decay will be performed.
use_cpu (bool, optional): use cpu. Default is False.
label_smooth (bool, optional): use label smoothing regularizer. Default is True.
Examples::
import torch
import torchreid
datamanager = torchreid.data.ImageDataManager(
root='path/to/reid-data',
sources='market1501',
height=256,
width=128,
combineall=False,
batch_size=32
)
model = torchreid.models.build_model(
name='resnet50',
num_classes=datamanager.num_train_pids,
loss='softmax'
)
model = model.cuda()
optimizer = torchreid.optim.build_optimizer(
model, optim='adam', lr=0.0003
)
scheduler = torchreid.optim.build_lr_scheduler(
optimizer,
lr_scheduler='single_step',
stepsize=20
)
engine = torchreid.engine.ImageSoftmaxEngine(
datamanager, model, optimizer, scheduler=scheduler
)
engine.run(
max_epoch=60,
save_dir='log/resnet50-softmax-market1501',
print_freq=10
)
"""
def __init__(self, datamanager, model, optimizer, scheduler=None, use_cpu=False,
label_smooth=True):
super(ImageSoftmaxEngine, self).__init__(datamanager, model, optimizer, scheduler, use_cpu)
self.criterion = CrossEntropyLoss(
num_classes=self.datamanager.num_train_pids,
use_gpu=self.use_gpu,
label_smooth=label_smooth
)
[docs] def train(self, epoch, trainloader, fixbase=False, open_layers=None, print_freq=10):
"""Trains the model for one epoch on source datasets using softmax loss.
Args:
epoch (int): current epoch.
trainloader (Dataloader): training dataloader.
fixbase (bool, optional): whether to fix base layers. Default is False.
open_layers (str or list, optional): layers open for training.
print_freq (int, optional): print frequency. Default is 10.
"""
losses = AverageMeter()
accs = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
self.model.train()
if fixbase and (open_layers is not None):
open_specified_layers(self.model, open_layers)
else:
open_all_layers(self.model)
end = time.time()
for batch_idx, data in enumerate(trainloader):
data_time.update(time.time() - end)
imgs, pids = self._parse_data_for_train(data)
if self.use_gpu:
imgs = imgs.cuda()
pids = pids.cuda()
self.optimizer.zero_grad()
outputs = self.model(imgs)
loss = self._compute_loss(self.criterion, outputs, pids)
loss.backward()
self.optimizer.step()
batch_time.update(time.time() - end)
losses.update(loss.item(), pids.size(0))
accs.update(metrics.accuracy(outputs, pids)[0].item())
if (batch_idx+1) % print_freq==0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc {acc.val:.2f} ({acc.avg:.2f})\t'.format(
epoch + 1, batch_idx + 1, len(trainloader),
batch_time=batch_time,
data_time=data_time,
loss=losses,
acc=accs))
end = time.time()
if (self.scheduler is not None) and (not fixbase):
self.scheduler.step()