from __future__ import print_function, absolute_import import numpy as np import copy def eval_cuhk03(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50): """Evaluation with cuhk03 metric""" raise NotImplementedError def eval_market1501(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50): """Evaluation with market1501 metric""" num_q, num_g = distmat.shape if num_g < max_rank: max_rank = num_g print("Note: number of gallery samples is quite small, got {}".format(num_g)) indices = np.argsort(distmat, axis=1) matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32) # compute cmc curve for each query all_cmc = [] all_AP = [] num_valid_q = 0. # number of valid query for q_idx in range(num_q): # get query pid and camid q_pid = q_pids[q_idx] q_camid = q_camids[q_idx] # remove gallery samples that have the same pid and camid with query order = indices[q_idx] remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid) keep = np.invert(remove) # compute cmc curve orig_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches if not np.any(orig_cmc): # this condition is true when query identity does not appear in gallery continue cmc = orig_cmc.cumsum() cmc[cmc > 1] = 1 all_cmc.append(cmc[:max_rank]) num_valid_q += 1. # compute average precision # reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision num_rel = orig_cmc.sum() tmp_cmc = orig_cmc.cumsum() tmp_cmc = [x / (i+1.) for i, x in enumerate(tmp_cmc)] tmp_cmc = np.asarray(tmp_cmc) * orig_cmc AP = tmp_cmc.sum() / num_rel all_AP.append(AP) assert num_valid_q > 0, "Error: all query identities do not appear in gallery" all_cmc = np.asarray(all_cmc).astype(np.float32) all_cmc = all_cmc.sum(0) / num_valid_q mAP = np.mean(all_AP) return all_cmc, mAP def evaluate(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50, use_metric_cuhk03=False): if use_metric_cuhk03: return eval_cuhk03(distmat, q_pids, g_pids, q_camids, g_camids, max_rank) else: return eval_market1501(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)