from __future__ import absolute_import from torchvision.transforms import * from PIL import Image import random import numpy as np class Random2DTranslation(object): """ With a probability, first increase image size to (1 + 1/8), and then perform random crop. Args: height (int): target height. width (int): target width. p (float): probability of performing this transformation. Default: 0.5. """ def __init__(self, height, width, p=0.5, interpolation=Image.BILINEAR): self.height = height self.width = width self.p = p self.interpolation = interpolation def __call__(self, img): """ Args: img (PIL Image): Image to be cropped. Returns: PIL Image: Cropped image. """ if random.random() < self.p: return img.resize((self.width, self.height), self.interpolation) new_width, new_height = int(round(self.width * 1.125)), int(round(self.height * 1.125)) resized_img = img.resize((new_width, new_height), self.interpolation) x_maxrange = new_width - self.width y_maxrange = new_height - self.height x1 = int(round(random.uniform(0, x_maxrange))) y1 = int(round(random.uniform(0, y_maxrange))) croped_img = resized_img.crop((x1, y1, x1 + self.width, y1 + self.height)) return croped_img if __name__ == '__main__': """import argparse parser = argparse.ArgumentParser() parser.add_argument('-impath', type=str) parser.add_argument('-nlevel', type=float, default=0.1) args = parser.parse_args() RC = RandomOcclusion(nlevel=args.nlevel, p=1) im = Image.open(args.impath) transformed_im = RC(im) basename = osp.basename(args.impath) save_name = osp.splitext(basename)[0] + '_nlevel_' + str(args.nlevel) + osp.splitext(basename)[1] transformed_im.save(save_name)""" pass