from __future__ import absolute_import from __future__ import print_function from __future__ import division import sys import os import os.path as osp import numpy as np import tarfile import zipfile import copy import torch from torchreid.utils import read_image, mkdir_if_missing, download_url class Dataset(object): def __init__(self, train, query, gallery, transform=None, mode='train', combineall=False, verbose=True, **kwargs): self.train = train self.query = query self.gallery = gallery self.transform = transform self.mode = mode self.combineall = combineall self.verbose = verbose self.num_train_pids = self.get_num_pids(self.train) self.num_train_cams = self.get_num_cams(self.train) if self.combineall: self.combine_all() if self.mode == 'train': self.data = self.train elif self.mode == 'query': self.data = self.query elif self.mode == 'gallery': self.data = self.gallery else: raise ValueError('Invalid mode. Got {}, but expected to be ' 'one of [train | query | gallery]'.format(self.mode)) if self.verbose: self.show_summary() def __getitem__(self, index): raise NotImplementedError def __len__(self): return len(self.data) def __add__(self, other): """Adds two datasets together (only the train set)""" train = copy.deepcopy(self.train) for img_path, pid, camid in other.train: pid += self.num_train_pids camid += self.num_train_cams train.append((img_path, pid, camid)) return Dataset(train, self.query, self.gallery, transform=self.transform, mode=self.mode, combineall=self.combineall, verbose=self.verbose) def __radd__(self, other): """Supports sum([dataset1, dataset2, dataset3])""" if other == 0: return self else: return self.__add__(other) def parse_data(self, data): """Parses data :param data: data list containing tuples of (img_path(s), pid, camid). :type data: list :return num_pids: number of person identities :rtype num_pids: int :return num_cams: number of cameras :rtype num_cams: int """ pids = set() cams = set() for _, pid, camid in data: pids.add(pid) cams.add(camid) return len(pids), len(cams) def get_num_pids(self, data): return self.parse_data(data)[0] def get_num_cams(self, data): return self.parse_data(data)[1] def show_summary(self): pass def combine_all(self): """Combines train, query and gallery""" combined = copy.deepcopy(self.train) # relabel pids in gallery g_pids = set() for _, pid, _ in self.gallery: if pid==0 or pid==-1: continue g_pids.add(pid) pid2label = {pid: i for i, pid in enumerate(g_pids)} def _combine_data(data): for img_path, pid, camid in data: if pid==0 or pid==-1: continue pid = pid2label[pid] + self.num_train_pids combined.append((img_path, pid, camid)) _combine_data(self.query) _combine_data(self.gallery) self.train = combined self.num_train_pids = self.get_num_pids(self.train) def download_dataset(self, dataset_dir, dataset_url): """Downloads and extracts dataset :param dataset_dir: dataset directory :type dataset_dir: str :param dataset_url: url to download dataset :type dataset_url: str """ if osp.exists(dataset_dir): return if dataset_url is None: raise RuntimeError('{} dataset needs to be manually ' 'prepared, please follow the ' 'document to prepare this dataset'.format(self.__class__.__name__)) print('Creating directory "{}"'.format(dataset_dir)) mkdir_if_missing(dataset_dir) fpath = osp.join(dataset_dir, osp.basename(dataset_url)) print('Downloading {} dataset to "{}"'.format(self.__class__.__name__, dataset_dir)) download_url(dataset_url, fpath) print('Extracting "{}"'.format(fpath)) extension = osp.basename(fpath).split('.')[-1] try: tar = tarfile.open(fpath) tar.extractall(path=dataset_dir) tar.close() except: zip_ref = zipfile.ZipFile(fpath, 'r') zip_ref.extractall(dataset_dir) zip_ref.close() print('{} dataset is ready'.format(self.__class__.__name__)) def check_before_run(self, required_files): """Checks if required files exist before going deeper :param required_files: string name(s) of file(s) :type required_files: str or list """ if isinstance(required_files, str): required_files = [required_files] for fpath in required_files: if not osp.exists(fpath): raise RuntimeError('"{}" is not found'.format(fpath)) def __repr__(self): num_train_pids, num_train_cams = self.parse_data(self.train) num_query_pids, num_query_cams = self.parse_data(self.query) num_gallery_pids, num_gallery_cams = self.parse_data(self.gallery) msg = ' ----------------------------------------\n' \ ' subset | # ids | # items | # cameras\n' \ ' ----------------------------------------\n' \ ' train | {:5d} | {:7d} | {:9d}\n' \ ' query | {:5d} | {:7d} | {:9d}\n' \ ' gallery | {:5d} | {:7d} | {:9d}\n' \ ' ----------------------------------------\n' \ ' items: images/tracklets for image/video dataset\n'.format( num_train_pids, len(self.train), num_train_cams, num_query_pids, len(self.query), num_query_cams, num_gallery_pids, len(self.gallery), num_gallery_cams ) return msg class ImageDataset(Dataset): def __init__(self, train, query, gallery, **kwargs): super(ImageDataset, self).__init__(train, query, gallery, **kwargs) def __getitem__(self, index): img_path, pid, camid = self.data[index] img = read_image(img_path) if self.transform is not None: img = self.transform(img) return img, pid, camid, img_path def show_summary(self): num_train_pids, num_train_cams = self.parse_data(self.train) num_query_pids, num_query_cams = self.parse_data(self.query) num_gallery_pids, num_gallery_cams = self.parse_data(self.gallery) print('=> Loaded {}'.format(self.__class__.__name__)) print(' ----------------------------------------') print(' subset | # ids | # images | # cameras') print(' ----------------------------------------') print(' train | {:5d} | {:8d} | {:9d}'.format(num_train_pids, len(self.train), num_train_cams)) print(' query | {:5d} | {:8d} | {:9d}'.format(num_query_pids, len(self.query), num_query_cams)) print(' gallery | {:5d} | {:8d} | {:9d}'.format(num_gallery_pids, len(self.gallery), num_gallery_cams)) print(' ----------------------------------------') class VideoDataset(Dataset): def __init__(self, train, query, gallery, seq_len=15, sample_method='evenly', **kwargs): super(VideoDataset, self).__init__(train, query, gallery, **kwargs) self.seq_len = seq_len self.sample_method = sample_method if self.transform is None: raise RuntimeError('transform must not be None') def __getitem__(self, index): img_paths, pid, camid = self.data[index] num_imgs = len(img_paths) if self.sample_method == 'random': # Randomly samples seq_len images from a tracklet of length num_imgs, # if num_imgs is smaller than seq_len, then replicates images indices = np.arange(num_imgs) replace = False if num_imgs>=self.seq_len else True indices = np.random.choice(indices, size=self.seq_len, replace=replace) # sort indices to keep temporal order (comment it to be order-agnostic) indices = np.sort(indices) elif self.sample_method == 'evenly': # Evenly samples seq_len images from a tracklet if num_imgs >= self.seq_len: num_imgs -= num_imgs % self.seq_len indices = np.arange(0, num_imgs, num_imgs/self.seq_len) else: # if num_imgs is smaller than seq_len, simply replicate the last image # until the seq_len requirement is satisfied indices = np.arange(0, num_imgs) num_pads = self.seq_len - num_imgs indices = np.concatenate([indices, np.ones(num_pads).astype(np.int32)*(num_imgs-1)]) assert len(indices) == self.seq_len elif self.sample_method == 'all': # Samples all images in a tracklet. batch_size must be set to 1 indices = np.arange(num_imgs) else: raise ValueError('Unknown sample method: {}'.format(self.sample_method)) imgs = [] for index in indices: img_path = img_paths[int(index)] img = read_image(img_path) if self.transform is not None: img = self.transform(img) img = img.unsqueeze(0) # img must be torch.Tensor imgs.append(img) imgs = torch.cat(imgs, dim=0) return imgs, pid, camid def show_summary(self): num_train_pids, num_train_cams = self.parse_data(self.train) num_query_pids, num_query_cams = self.parse_data(self.query) num_gallery_pids, num_gallery_cams = self.parse_data(self.gallery) print('=> Loaded {}'.format(self.__class__.__name__)) print(' -------------------------------------------') print(' subset | # ids | # tracklets | # cameras') print(' -------------------------------------------') print(' train | {:5d} | {:11d} | {:9d}'.format(num_train_pids, len(self.train), num_train_cams)) print(' query | {:5d} | {:11d} | {:9d}'.format(num_query_pids, len(self.query), num_query_cams)) print(' gallery | {:5d} | {:11d} | {:9d}'.format(num_gallery_pids, len(self.gallery), num_gallery_cams)) print(' -------------------------------------------')