from __future__ import absolute_import import torch from .resnet import * from .resnetmid import * from .resnext import * from .senet import * from .densenet import * from .inceptionresnetv2 import * from .inceptionv4 import * from .xception import * from .nasnet import * from .mobilenetv2 import * from .shufflenet import * from .squeezenet import * from .mudeep import * from .hacnn import * from .pcb import * from .mlfn import * __model_factory = { # image classification models 'resnet50': resnet50, 'resnet50_fc512': resnet50_fc512, 'resnext50_32x4d': resnext50_32x4d, 'resnext50_32x4d_fc512': resnext50_32x4d_fc512, 'se_resnet50': se_resnet50, 'se_resnet50_fc512': se_resnet50_fc512, 'se_resnet101': se_resnet101, 'se_resnext50_32x4d': se_resnext50_32x4d, 'se_resnext101_32x4d': se_resnext101_32x4d, 'densenet121': densenet121, 'densenet121_fc512': densenet121_fc512, 'inceptionresnetv2': inceptionresnetv2, 'inceptionv4': inceptionv4, 'xception': xception, # lightweight models 'nasnsetmobile': nasnetamobile, 'mobilenetv2_1dot0': mobilenetv2_1dot0, 'mobilenetv2_1dot4': mobilenetv2_1dot4, 'shufflenet': shufflenet, 'squeezenet1_0': squeezenet1_0, 'squeezenet1_0_fc512': squeezenet1_0_fc512, 'squeezenet1_1': squeezenet1_1, # reid-specific models 'mudeep': MuDeep, 'resnet50mid': resnet50mid, 'hacnn': HACNN, 'pcb_p6': pcb_p6, 'pcb_p4': pcb_p4, 'mlfn': mlfn, } def show_avai_models(): """Displays available models. Examples:: >>> from torchreid import models >>> models.show_avai_models() """ print(list(__model_factory.keys())) def build_model(name, num_classes, loss='softmax', pretrained=True, use_gpu=True): """A function wrapper for building a model. Args: name (str): model name. num_classes (int): number of training identities. loss (str, optional): loss function to optimize the model. Currently supports "softmax" and "triplet". Default is "softmax". pretrained (bool, optional): whether to load ImageNet-pretrained weights. Default is True. use_gpu (bool, optional): whether to use gpu. Default is True. Returns: nn.Module Examples:: >>> from torchreid import models >>> model = models.build_model('resnet50', 751, loss='softmax') """ avai_models = list(__model_factory.keys()) if name not in avai_models: raise KeyError('Unknown model: {}. Must be one of {}'.format(name, avai_models)) print('Initializing model: {}'.format(name)) return __model_factory[name]( num_classes=num_classes, loss=loss, pretrained=pretrained, use_gpu=use_gpu )