from __future__ import division, absolute_import
import torch
import torch.utils.model_zoo as model_zoo
from torch import nn
from torch.nn import functional as F

__all__ = ['mlfn']

model_urls = {
    # training epoch = 5, top1 = 51.6
    'imagenet':
    'https://mega.nz/#!YHxAhaxC!yu9E6zWl0x5zscSouTdbZu8gdFFytDdl-RAdD2DEfpk',
}


class MLFNBlock(nn.Module):

    def __init__(
        self, in_channels, out_channels, stride, fsm_channels, groups=32
    ):
        super(MLFNBlock, self).__init__()
        self.groups = groups
        mid_channels = out_channels // 2

        # Factor Modules
        self.fm_conv1 = nn.Conv2d(in_channels, mid_channels, 1, bias=False)
        self.fm_bn1 = nn.BatchNorm2d(mid_channels)
        self.fm_conv2 = nn.Conv2d(
            mid_channels,
            mid_channels,
            3,
            stride=stride,
            padding=1,
            bias=False,
            groups=self.groups
        )
        self.fm_bn2 = nn.BatchNorm2d(mid_channels)
        self.fm_conv3 = nn.Conv2d(mid_channels, out_channels, 1, bias=False)
        self.fm_bn3 = nn.BatchNorm2d(out_channels)

        # Factor Selection Module
        self.fsm = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels, fsm_channels[0], 1),
            nn.BatchNorm2d(fsm_channels[0]),
            nn.ReLU(inplace=True),
            nn.Conv2d(fsm_channels[0], fsm_channels[1], 1),
            nn.BatchNorm2d(fsm_channels[1]),
            nn.ReLU(inplace=True),
            nn.Conv2d(fsm_channels[1], self.groups, 1),
            nn.BatchNorm2d(self.groups),
            nn.Sigmoid(),
        )

        self.downsample = None
        if in_channels != out_channels or stride > 1:
            self.downsample = nn.Sequential(
                nn.Conv2d(
                    in_channels, out_channels, 1, stride=stride, bias=False
                ),
                nn.BatchNorm2d(out_channels),
            )

    def forward(self, x):
        residual = x
        s = self.fsm(x)

        # reduce dimension
        x = self.fm_conv1(x)
        x = self.fm_bn1(x)
        x = F.relu(x, inplace=True)

        # group convolution
        x = self.fm_conv2(x)
        x = self.fm_bn2(x)
        x = F.relu(x, inplace=True)

        # factor selection
        b, c = x.size(0), x.size(1)
        n = c // self.groups
        ss = s.repeat(1, n, 1, 1) # from (b, g, 1, 1) to (b, g*n=c, 1, 1)
        ss = ss.view(b, n, self.groups, 1, 1)
        ss = ss.permute(0, 2, 1, 3, 4).contiguous()
        ss = ss.view(b, c, 1, 1)
        x = ss * x

        # recover dimension
        x = self.fm_conv3(x)
        x = self.fm_bn3(x)
        x = F.relu(x, inplace=True)

        if self.downsample is not None:
            residual = self.downsample(residual)

        return F.relu(residual + x, inplace=True), s


class MLFN(nn.Module):
    """Multi-Level Factorisation Net.

    Reference:
        Chang et al. Multi-Level Factorisation Net for
        Person Re-Identification. CVPR 2018.

    Public keys:
        - ``mlfn``: MLFN (Multi-Level Factorisation Net).
    """

    def __init__(
        self,
        num_classes,
        loss='softmax',
        groups=32,
        channels=[64, 256, 512, 1024, 2048],
        embed_dim=1024,
        **kwargs
    ):
        super(MLFN, self).__init__()
        self.loss = loss
        self.groups = groups

        # first convolutional layer
        self.conv1 = nn.Conv2d(3, channels[0], 7, stride=2, padding=3)
        self.bn1 = nn.BatchNorm2d(channels[0])
        self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)

        # main body
        self.feature = nn.ModuleList(
            [
                # layer 1-3
                MLFNBlock(channels[0], channels[1], 1, [128, 64], self.groups),
                MLFNBlock(channels[1], channels[1], 1, [128, 64], self.groups),
                MLFNBlock(channels[1], channels[1], 1, [128, 64], self.groups),
                # layer 4-7
                MLFNBlock(
                    channels[1], channels[2], 2, [256, 128], self.groups
                ),
                MLFNBlock(
                    channels[2], channels[2], 1, [256, 128], self.groups
                ),
                MLFNBlock(
                    channels[2], channels[2], 1, [256, 128], self.groups
                ),
                MLFNBlock(
                    channels[2], channels[2], 1, [256, 128], self.groups
                ),
                # layer 8-13
                MLFNBlock(
                    channels[2], channels[3], 2, [512, 128], self.groups
                ),
                MLFNBlock(
                    channels[3], channels[3], 1, [512, 128], self.groups
                ),
                MLFNBlock(
                    channels[3], channels[3], 1, [512, 128], self.groups
                ),
                MLFNBlock(
                    channels[3], channels[3], 1, [512, 128], self.groups
                ),
                MLFNBlock(
                    channels[3], channels[3], 1, [512, 128], self.groups
                ),
                MLFNBlock(
                    channels[3], channels[3], 1, [512, 128], self.groups
                ),
                # layer 14-16
                MLFNBlock(
                    channels[3], channels[4], 2, [512, 128], self.groups
                ),
                MLFNBlock(
                    channels[4], channels[4], 1, [512, 128], self.groups
                ),
                MLFNBlock(
                    channels[4], channels[4], 1, [512, 128], self.groups
                ),
            ]
        )
        self.global_avgpool = nn.AdaptiveAvgPool2d(1)

        # projection functions
        self.fc_x = nn.Sequential(
            nn.Conv2d(channels[4], embed_dim, 1, bias=False),
            nn.BatchNorm2d(embed_dim),
            nn.ReLU(inplace=True),
        )
        self.fc_s = nn.Sequential(
            nn.Conv2d(self.groups * 16, embed_dim, 1, bias=False),
            nn.BatchNorm2d(embed_dim),
            nn.ReLU(inplace=True),
        )

        self.classifier = nn.Linear(embed_dim, num_classes)

        self.init_params()

    def init_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(
                    m.weight, mode='fan_out', nonlinearity='relu'
                )
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = F.relu(x, inplace=True)
        x = self.maxpool(x)

        s_hat = []
        for block in self.feature:
            x, s = block(x)
            s_hat.append(s)
        s_hat = torch.cat(s_hat, 1)

        x = self.global_avgpool(x)
        x = self.fc_x(x)
        s_hat = self.fc_s(s_hat)

        v = (x+s_hat) * 0.5
        v = v.view(v.size(0), -1)

        if not self.training:
            return v

        y = self.classifier(v)

        if self.loss == 'softmax':
            return y
        elif self.loss == 'triplet':
            return y, v
        else:
            raise KeyError('Unsupported loss: {}'.format(self.loss))


def init_pretrained_weights(model, model_url):
    """Initializes model with pretrained weights.
    
    Layers that don't match with pretrained layers in name or size are kept unchanged.
    """
    pretrain_dict = model_zoo.load_url(model_url)
    model_dict = model.state_dict()
    pretrain_dict = {
        k: v
        for k, v in pretrain_dict.items()
        if k in model_dict and model_dict[k].size() == v.size()
    }
    model_dict.update(pretrain_dict)
    model.load_state_dict(model_dict)


def mlfn(num_classes, loss='softmax', pretrained=True, **kwargs):
    model = MLFN(num_classes, loss, **kwargs)
    if pretrained:
        # init_pretrained_weights(model, model_urls['imagenet'])
        import warnings
        warnings.warn(
            'The imagenet pretrained weights need to be manually downloaded from {}'
            .format(model_urls['imagenet'])
        )
    return model