from __future__ import print_function from __future__ import division import os import sys import time import datetime import argparse import os.path as osp import numpy as np import torch import torch.nn as nn import torch.backends.cudnn as cudnn from torch.utils.data import DataLoader from torch.optim import lr_scheduler from torchreid import data_manager from torchreid.dataset_loader import ImageDataset, VideoDataset from torchreid import transforms as T from torchreid import models from torchreid.losses import CrossEntropyLabelSmooth from torchreid.utils.iotools import save_checkpoint, check_isfile from torchreid.utils.avgmeter import AverageMeter from torchreid.utils.logger import Logger from torchreid.utils.torchtools import set_bn_to_eval, count_num_param from torchreid.utils.reidtools import visualize_ranked_results from torchreid.eval_metrics import evaluate from torchreid.optimizers import init_optim parser = argparse.ArgumentParser(description='Train video model with cross entropy loss') # Datasets parser.add_argument('--root', type=str, default='data', help="root path to data directory") parser.add_argument('-d', '--dataset', type=str, default='mars', choices=data_manager.get_names()) parser.add_argument('-j', '--workers', default=4, type=int, help="number of data loading workers (default: 4)") parser.add_argument('--height', type=int, default=256, help="height of an image (default: 256)") parser.add_argument('--width', type=int, default=128, help="width of an image (default: 128)") parser.add_argument('--seq-len', type=int, default=15, help="number of images to sample in a tracklet (default: 15)") # Optimization options parser.add_argument('--optim', type=str, default='adam', help="optimization algorithm (see optimizers.py)") parser.add_argument('--max-epoch', default=15, type=int, help="maximum epochs to run") parser.add_argument('--start-epoch', default=0, type=int, help="manual epoch number (useful on restarts)") parser.add_argument('--train-batch', default=32, type=int, help="train batch size") parser.add_argument('--test-batch', default=5, type=int, help="test batch size (number of tracklets)") parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float, help="initial learning rate") parser.add_argument('--stepsize', default=[20, 40], nargs='+', type=int, help="stepsize to decay learning rate") parser.add_argument('--gamma', default=0.1, type=float, help="learning rate decay") parser.add_argument('--weight-decay', default=5e-04, type=float, help="weight decay (default: 5e-04)") parser.add_argument('--fixbase-epoch', default=0, type=int, help="epochs to fix base network (only train classifier, default: 0)") parser.add_argument('--fixbase-lr', default=0.0003, type=float, help="learning rate (when base network is frozen)") parser.add_argument('--freeze-bn', action='store_true', help="freeze running statistics in BatchNorm layers during training (default: False)") parser.add_argument('--label-smooth', action='store_true', help="use label smoothing regularizer in cross entropy loss") # Architecture parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.get_names()) parser.add_argument('--pool', type=str, default='avg', choices=['avg', 'max']) # Miscs parser.add_argument('--print-freq', type=int, default=10, help="print frequency") parser.add_argument('--seed', type=int, default=1, help="manual seed") parser.add_argument('--resume', type=str, default='', metavar='PATH') parser.add_argument('--load-weights', type=str, default='', help="load pretrained weights but ignores layers that don't match in size") parser.add_argument('--evaluate', action='store_true', help="evaluation only") parser.add_argument('--eval-step', type=int, default=-1, help="run evaluation for every N epochs (set to -1 to test after training)") parser.add_argument('--start-eval', type=int, default=0, help="start to evaluate after specific epoch") parser.add_argument('--save-dir', type=str, default='log') parser.add_argument('--use-cpu', action='store_true', help="use cpu") parser.add_argument('--gpu-devices', default='0', type=str, help='gpu device ids for CUDA_VISIBLE_DEVICES') parser.add_argument('--use-avai-gpus', action='store_true', help="use available gpus instead of specified devices (this is useful when using managed clusters)") parser.add_argument('--visualize-ranks', action='store_true', help="visualize ranked results, only available in evaluation mode (default: False)") # global variables args = parser.parse_args() best_rank1 = -np.inf def main(): global args, best_rank1 torch.manual_seed(args.seed) if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False if not args.evaluate: sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt')) else: sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_vidreid_dataset(root=args.root, name=args.dataset) transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) pin_memory = True if use_gpu else False # decompose tracklets into images new_train = [] for img_paths, pid, camid in dataset.train: for img_path in img_paths: new_train.append((img_path, pid, camid)) trainloader = DataLoader( ImageDataset(new_train, transform=transform_train), batch_size=args.train_batch, shuffle=True, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryloader = DataLoader( VideoDataset(dataset.query, seq_len=args.seq_len, sample='evenly', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( VideoDataset(dataset.gallery, seq_len=args.seq_len, sample='evenly', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent'}) print("Model size: {:.3f} M".format(count_num_param(model))) if args.label_smooth: criterion = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu) else: criterion = nn.CrossEntropyLoss() optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma) if args.fixbase_epoch > 0: if hasattr(model, 'classifier') and isinstance(model.classifier, nn.Module): optimizer_tmp = init_optim(args.optim, model.classifier.parameters(), args.fixbase_lr, args.weight_decay) else: print("Warn: model has no attribute 'classifier' and fixbase_epoch is reset to 0") args.fixbase_epoch = 0 if args.load_weights and check_isfile(args.load_weights): # load pretrained weights but ignore layers that don't match in size checkpoint = torch.load(args.load_weights) pretrain_dict = checkpoint['state_dict'] model_dict = model.state_dict() pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()} model_dict.update(pretrain_dict) model.load_state_dict(model_dict) print("Loaded pretrained weights from '{}'".format(args.load_weights)) if args.resume and check_isfile(args.resume): checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['state_dict']) args.start_epoch = checkpoint['epoch'] + 1 best_rank1 = checkpoint['rank1'] print("Loaded checkpoint from '{}'".format(args.resume)) print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, best_rank1)) if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print("Evaluate only") distmat = test(model, queryloader, galleryloader, args.pool, use_gpu, return_distmat=True) if args.visualize_ranks: visualize_ranked_results( distmat, dataset, save_dir=osp.join(args.save_dir, 'ranked_results'), topk=20, ) return start_time = time.time() train_time = 0 best_epoch = args.start_epoch print("==> Start training") if args.fixbase_epoch > 0: print("Train classifier for {} epochs while keeping base network frozen".format(args.fixbase_epoch)) for epoch in range(args.fixbase_epoch): start_train_time = time.time() train(epoch, model, criterion, optimizer_tmp, trainloader, use_gpu, freeze_bn=True) train_time += round(time.time() - start_train_time) del optimizer_tmp print("Now open all layers for training") for epoch in range(args.start_epoch, args.max_epoch): start_train_time = time.time() train(epoch, model, criterion, optimizer, trainloader, use_gpu) train_time += round(time.time() - start_train_time) scheduler.step() if (epoch + 1) > args.start_eval and args.eval_step > 0 and (epoch + 1) % args.eval_step == 0 or (epoch + 1) == args.max_epoch: print("==> Test") rank1 = test(model, queryloader, galleryloader, args.pool, use_gpu) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 best_epoch = epoch + 1 if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint({ 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar')) print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch)) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) train_time = str(datetime.timedelta(seconds=train_time)) print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time)) def train(epoch, model, criterion, optimizer, trainloader, use_gpu, freeze_bn=False): losses = AverageMeter() batch_time = AverageMeter() data_time = AverageMeter() model.train() if freeze_bn or args.freeze_bn: model.apply(set_bn_to_eval) end = time.time() for batch_idx, (imgs, pids, _) in enumerate(trainloader): data_time.update(time.time() - end) if use_gpu: imgs, pids = imgs.cuda(), pids.cuda() outputs = model(imgs) loss = criterion(outputs, pids) optimizer.zero_grad() loss.backward() optimizer.step() batch_time.update(time.time() - end) losses.update(loss.item(), pids.size(0)) if (batch_idx + 1) % args.print_freq == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.4f} ({data_time.avg:.4f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format( epoch + 1, batch_idx + 1, len(trainloader), batch_time=batch_time, data_time=data_time, loss=losses)) end = time.time() def test(model, queryloader, galleryloader, pool, use_gpu, ranks=[1, 5, 10, 20], return_distmat=False): batch_time = AverageMeter() model.eval() with torch.no_grad(): qf, q_pids, q_camids = [], [], [] for batch_idx, (imgs, pids, camids) in enumerate(queryloader): if use_gpu: imgs = imgs.cuda() b, s, c, h, w = imgs.size() imgs = imgs.view(b*s, c, h, w) end = time.time() features = model(imgs) batch_time.update(time.time() - end) features = features.view(b, s, -1) if pool == 'avg': features = torch.mean(features, 1) else: features, _ = torch.max(features, 1) features = features.data.cpu() qf.append(features) q_pids.extend(pids) q_camids.extend(camids) qf = torch.cat(qf, 0) q_pids = np.asarray(q_pids) q_camids = np.asarray(q_camids) print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1))) gf, g_pids, g_camids = [], [], [] for batch_idx, (imgs, pids, camids) in enumerate(galleryloader): if use_gpu: imgs = imgs.cuda() b, s, c, h, w = imgs.size() imgs = imgs.view(b*s, c, h, w) end = time.time() features = model(imgs) batch_time.update(time.time() - end) features = features.view(b, s, -1) if pool == 'avg': features = torch.mean(features, 1) else: features, _ = torch.max(features, 1) features = features.data.cpu() gf.append(features) g_pids.extend(pids) g_camids.extend(camids) gf = torch.cat(gf, 0) g_pids = np.asarray(g_pids) g_camids = np.asarray(g_camids) print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1))) print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch*args.seq_len)) m, n = qf.size(0), gf.size(0) distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \ torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t() distmat.addmm_(1, -2, qf, gf.t()) distmat = distmat.numpy() print("Computing CMC and mAP") cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids) print("Results ----------") print("mAP: {:.1%}".format(mAP)) print("CMC curve") for r in ranks: print("Rank-{:<3}: {:.1%}".format(r, cmc[r-1])) print("------------------") if return_distmat: return distmat return cmc[0] if __name__ == '__main__': main()