from __future__ import absolute_import from collections import OrderedDict import math import torch import torch.nn as nn from torch.utils import model_zoo from torch.nn import functional as F import torchvision """ Code imported from https://github.com/Cadene/pretrained-models.pytorch """ __all__ = ['SEResNet50', 'SEResNet101', 'SEResNeXt50', 'SEResNeXt101'] pretrained_settings = { 'senet154': { 'imagenet': { 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth', 'input_space': 'RGB', 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } }, 'se_resnet50': { 'imagenet': { 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet50-ce0d4300.pth', 'input_space': 'RGB', 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } }, 'se_resnet101': { 'imagenet': { 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet101-7e38fcc6.pth', 'input_space': 'RGB', 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } }, 'se_resnet152': { 'imagenet': { 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnet152-d17c99b7.pth', 'input_space': 'RGB', 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } }, 'se_resnext50_32x4d': { 'imagenet': { 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth', 'input_space': 'RGB', 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } }, 'se_resnext101_32x4d': { 'imagenet': { 'url': 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth', 'input_space': 'RGB', 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } }, } class SEModule(nn.Module): def __init__(self, channels, reduction): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0) self.sigmoid = nn.Sigmoid() def forward(self, x): module_input = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.sigmoid(x) return module_input * x class Bottleneck(nn.Module): """ Base class for bottlenecks that implements `forward()` method. """ def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out = self.se_module(out) + residual out = self.relu(out) return out class SEBottleneck(Bottleneck): """ Bottleneck for SENet154. """ expansion = 4 def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None): super(SEBottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes * 2) self.conv2 = nn.Conv2d(planes * 2, planes * 4, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False) self.bn2 = nn.BatchNorm2d(planes * 4) self.conv3 = nn.Conv2d(planes * 4, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.se_module = SEModule(planes * 4, reduction=reduction) self.downsample = downsample self.stride = stride class SEResNetBottleneck(Bottleneck): """ ResNet bottleneck with a Squeeze-and-Excitation module. It follows Caffe implementation and uses `stride=stride` in `conv1` and not in `conv2` (the latter is used in the torchvision implementation of ResNet). """ expansion = 4 def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None): super(SEResNetBottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False, stride=stride) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, groups=groups, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.se_module = SEModule(planes * 4, reduction=reduction) self.downsample = downsample self.stride = stride class SEResNeXtBottleneck(Bottleneck): """ ResNeXt bottleneck type C with a Squeeze-and-Excitation module. """ expansion = 4 def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None, base_width=4): super(SEResNeXtBottleneck, self).__init__() width = int(math.floor(planes * (base_width / 64.)) * groups) self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False, stride=1) self.bn1 = nn.BatchNorm2d(width) self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False) self.bn2 = nn.BatchNorm2d(width) self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.se_module = SEModule(planes * 4, reduction=reduction) self.downsample = downsample self.stride = stride class SENet(nn.Module): def __init__(self, block, layers, groups, reduction, dropout_p=0.2, inplanes=128, input_3x3=True, downsample_kernel_size=3, downsample_padding=1, num_classes=1000): """ Parameters ---------- block (nn.Module): Bottleneck class. - For SENet154: SEBottleneck - For SE-ResNet models: SEResNetBottleneck - For SE-ResNeXt models: SEResNeXtBottleneck layers (list of ints): Number of residual blocks for 4 layers of the network (layer1...layer4). groups (int): Number of groups for the 3x3 convolution in each bottleneck block. - For SENet154: 64 - For SE-ResNet models: 1 - For SE-ResNeXt models: 32 reduction (int): Reduction ratio for Squeeze-and-Excitation modules. - For all models: 16 dropout_p (float or None): Drop probability for the Dropout layer. If `None` the Dropout layer is not used. - For SENet154: 0.2 - For SE-ResNet models: None - For SE-ResNeXt models: None inplanes (int): Number of input channels for layer1. - For SENet154: 128 - For SE-ResNet models: 64 - For SE-ResNeXt models: 64 input_3x3 (bool): If `True`, use three 3x3 convolutions instead of a single 7x7 convolution in layer0. - For SENet154: True - For SE-ResNet models: False - For SE-ResNeXt models: False downsample_kernel_size (int): Kernel size for downsampling convolutions in layer2, layer3 and layer4. - For SENet154: 3 - For SE-ResNet models: 1 - For SE-ResNeXt models: 1 downsample_padding (int): Padding for downsampling convolutions in layer2, layer3 and layer4. - For SENet154: 1 - For SE-ResNet models: 0 - For SE-ResNeXt models: 0 num_classes (int): Number of outputs in `last_linear` layer. - For all models: 1000 """ super(SENet, self).__init__() self.inplanes = inplanes if input_3x3: layer0_modules = [ ('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1, bias=False)), ('bn1', nn.BatchNorm2d(64)), ('relu1', nn.ReLU(inplace=True)), ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False)), ('bn2', nn.BatchNorm2d(64)), ('relu2', nn.ReLU(inplace=True)), ('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1, bias=False)), ('bn3', nn.BatchNorm2d(inplanes)), ('relu3', nn.ReLU(inplace=True)), ] else: layer0_modules = [ ('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2, padding=3, bias=False)), ('bn1', nn.BatchNorm2d(inplanes)), ('relu1', nn.ReLU(inplace=True)), ] # To preserve compatibility with Caffe weights `ceil_mode=True` # is used instead of `padding=1`. layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2, ceil_mode=True))) self.layer0 = nn.Sequential(OrderedDict(layer0_modules)) self.layer1 = self._make_layer( block, planes=64, blocks=layers[0], groups=groups, reduction=reduction, downsample_kernel_size=1, downsample_padding=0 ) self.layer2 = self._make_layer( block, planes=128, blocks=layers[1], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.layer3 = self._make_layer( block, planes=256, blocks=layers[2], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.layer4 = self._make_layer( block, planes=512, blocks=layers[3], stride=2, groups=groups, reduction=reduction, downsample_kernel_size=downsample_kernel_size, downsample_padding=downsample_padding ) self.avg_pool = nn.AvgPool2d(7, stride=1) self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None self.last_linear = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, blocks, groups, reduction, stride=1, downsample_kernel_size=1, downsample_padding=0): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=downsample_kernel_size, stride=stride, padding=downsample_padding, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, groups, reduction, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, groups, reduction)) return nn.Sequential(*layers) def features(self, x): x = self.layer0(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def logits(self, x): x = self.avg_pool(x) if self.dropout is not None: x = self.dropout(x) x = x.view(x.size(0), -1) x = self.last_linear(x) return x def forward(self, x): x = self.features(x) x = self.logits(x) return x def initialize_pretrained_model(model, num_classes, settings): assert num_classes == settings['num_classes'], \ 'num_classes should be {}, but is {}'.format( settings['num_classes'], num_classes) model.load_state_dict(model_zoo.load_url(settings['url'])) model.input_space = settings['input_space'] model.input_size = settings['input_size'] model.input_range = settings['input_range'] model.mean = settings['mean'] model.std = settings['std'] def senet154(num_classes=1000, pretrained='imagenet'): model = SENet(SEBottleneck, [3, 8, 36, 3], groups=64, reduction=16, dropout_p=0.2, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['senet154'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def se_resnet50(num_classes=1000, pretrained='imagenet'): model = SENet(SEResNetBottleneck, [3, 4, 6, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnet50'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def se_resnet101(num_classes=1000, pretrained='imagenet'): model = SENet(SEResNetBottleneck, [3, 4, 23, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnet101'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def se_resnet152(num_classes=1000, pretrained='imagenet'): model = SENet(SEResNetBottleneck, [3, 8, 36, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnet152'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def se_resnext50_32x4d(num_classes=1000, pretrained='imagenet'): model = SENet(SEResNeXtBottleneck, [3, 4, 6, 3], groups=32, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnext50_32x4d'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model def se_resnext101_32x4d(num_classes=1000, pretrained='imagenet'): model = SENet(SEResNeXtBottleneck, [3, 4, 23, 3], groups=32, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = pretrained_settings['se_resnext101_32x4d'][pretrained] initialize_pretrained_model(model, num_classes, settings) return model ##################### Model Definition ######################### class SEResNet50(nn.Module): def __init__(self, num_classes, loss={'xent'}, **kwargs): super(SEResNet50, self).__init__() self.loss = loss base = se_resnet50() self.base = nn.Sequential(*list(base.children())[:-2]) self.classifier = nn.Linear(2048, num_classes) self.feat_dim = 2048 # feature dimension def forward(self, x): x = self.base(x) x = F.avg_pool2d(x, x.size()[2:]) f = x.view(x.size(0), -1) if not self.training: return f y = self.classifier(f) if self.loss == {'xent'}: return y elif self.loss == {'xent', 'htri'}: return y, f elif self.loss == {'cent'}: return y, f elif self.loss == {'ring'}: return y, f else: raise KeyError("Unsupported loss: {}".format(self.loss)) class SEResNet101(nn.Module): def __init__(self, num_classes, loss={'xent'}, **kwargs): super(SEResNet101, self).__init__() self.loss = loss base = se_resnet101() self.base = nn.Sequential(*list(base.children())[:-2]) self.classifier = nn.Linear(2048, num_classes) self.feat_dim = 2048 # feature dimension def forward(self, x): x = self.base(x) x = F.avg_pool2d(x, x.size()[2:]) f = x.view(x.size(0), -1) if not self.training: return f y = self.classifier(f) if self.loss == {'xent'}: return y elif self.loss == {'xent', 'htri'}: return y, f elif self.loss == {'cent'}: return y, f elif self.loss == {'ring'}: return y, f else: raise KeyError("Unsupported loss: {}".format(self.loss)) class SEResNeXt50(nn.Module): def __init__(self, num_classes, loss={'xent'}, **kwargs): super(SEResNeXt50, self).__init__() self.loss = loss base = se_resnext50_32x4d() self.base = nn.Sequential(*list(base.children())[:-2]) self.classifier = nn.Linear(2048, num_classes) self.feat_dim = 2048 # feature dimension def forward(self, x): x = self.base(x) x = F.avg_pool2d(x, x.size()[2:]) f = x.view(x.size(0), -1) if not self.training: return f y = self.classifier(f) if self.loss == {'xent'}: return y elif self.loss == {'xent', 'htri'}: return y, f elif self.loss == {'cent'}: return y, f elif self.loss == {'ring'}: return y, f else: raise KeyError("Unsupported loss: {}".format(self.loss)) class SEResNeXt101(nn.Module): def __init__(self, num_classes, loss={'xent'}, **kwargs): super(SEResNeXt101, self).__init__() self.loss = loss base = se_resnext101_32x4d() self.base = nn.Sequential(*list(base.children())[:-2]) self.classifier = nn.Linear(2048, num_classes) self.feat_dim = 2048 # feature dimension def forward(self, x): x = self.base(x) x = F.avg_pool2d(x, x.size()[2:]) f = x.view(x.size(0), -1) if not self.training: return f y = self.classifier(f) if self.loss == {'xent'}: return y elif self.loss == {'xent', 'htri'}: return y, f elif self.loss == {'cent'}: return y, f elif self.loss == {'ring'}: return y, f else: raise KeyError("Unsupported loss: {}".format(self.loss))