Source code for torchreid.models.resnext

from __future__ import absolute_import
from __future__ import division

__all__ = ['resnext50_32x4d', 'resnext50_32x4d_fc512']

import math

import torch
from torch import nn
from torch.nn import functional as F
import torchvision
import torch.utils.model_zoo as model_zoo


model_urls = {
    # top1 = 76.3
    'resnext50_32x4d': 'http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/imagenet-pretrained/resnext50_32x4d-453b60f8.pth',
}


class ResNeXtBottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, groups=32, base_width=4, stride=1, downsample=None):
        super(ResNeXtBottleneck, self).__init__()
        width = int(math.floor(planes * (base_width / 64.)) * groups)
        self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False, stride=1)
        self.bn1 = nn.BatchNorm2d(width)
        self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False)
        self.bn2 = nn.BatchNorm2d(width)
        self.conv3 = nn.Conv2d(width, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


[docs]class ResNeXt(nn.Module): """ResNeXt. Reference: Xie et al. Aggregated Residual Transformations for Deep Neural Networks. CVPR 2017. Public keys: - ``resnext50_32x4d``: ResNeXt50 (groups=32, width=4). - ``resnext50_32x4d_fc512`` ResNeXt50 (groups=32, width=4) + FC. """ def __init__(self, num_classes, loss, block, layers, groups=32, base_width=4, last_stride=2, fc_dims=None, dropout_p=None, **kwargs): self.inplanes = 64 super(ResNeXt, self).__init__() self.loss = loss self.feature_dim = 512 * block.expansion # backbone network self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], groups, base_width) self.layer2 = self._make_layer(block, 128, layers[1], groups, base_width, stride=2) self.layer3 = self._make_layer(block, 256, layers[2], groups, base_width, stride=2) self.layer4 = self._make_layer(block, 512, layers[3], groups, base_width, stride=last_stride) self.global_avgpool = nn.AdaptiveAvgPool2d(1) self.fc = self._construct_fc_layer(fc_dims, 512 * block.expansion, dropout_p) self.classifier = nn.Linear(self.feature_dim, num_classes) self._init_params() def _make_layer(self, block, planes, blocks, groups, base_width, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, groups, base_width, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, groups, base_width)) return nn.Sequential(*layers) def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None): """Constructs fully connected layer. Args: fc_dims (list or tuple): dimensions of fc layers, if None, no fc layers are constructed input_dim (int): input dimension dropout_p (float): dropout probability, if None, dropout is unused """ if fc_dims is None: self.feature_dim = input_dim return None assert isinstance(fc_dims, (list, tuple)), 'fc_dims must be either list or tuple, but got {}'.format(type(fc_dims)) layers = [] for dim in fc_dims: layers.append(nn.Linear(input_dim, dim)) layers.append(nn.BatchNorm1d(dim)) layers.append(nn.ReLU(inplace=True)) if dropout_p is not None: layers.append(nn.Dropout(p=dropout_p)) input_dim = dim self.feature_dim = fc_dims[-1] return nn.Sequential(*layers) def _init_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) def featuremaps(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def forward(self, x): f = self.featuremaps(x) v = self.global_avgpool(f) v = v.view(v.size(0), -1) if self.fc is not None: v = self.fc(v) if not self.training: return v y = self.classifier(v) if self.loss == 'softmax': return y elif self.loss == 'triplet': return y, v else: raise KeyError("Unsupported loss: {}".format(self.loss))
def init_pretrained_weights(model, model_url): """Initializes model with pretrained weights. Layers that don't match with pretrained layers in name or size are kept unchanged. """ pretrain_dict = model_zoo.load_url(model_url) model_dict = model.state_dict() pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()} model_dict.update(pretrain_dict) model.load_state_dict(model_dict) def resnext50_32x4d(num_classes, loss='softmax', pretrained=True, **kwargs): model = ResNeXt( num_classes=num_classes, loss=loss, block=ResNeXtBottleneck, layers=[3, 4, 6, 3], groups=32, base_width=4, last_stride=2, fc_dims=None, dropout_p=None, **kwargs ) if pretrained: init_pretrained_weights(model, model_urls['resnext50_32x4d']) return model def resnext50_32x4d_fc512(num_classes, loss='softmax', pretrained=True, **kwargs): model = ResNeXt( num_classes=num_classes, loss=loss, block=ResNeXtBottleneck, layers=[3, 4, 6, 3], groups=32, base_width=4, last_stride=1, fc_dims=[512], dropout_p=None, **kwargs ) if pretrained: init_pretrained_weights(model, model_urls['resnext50_32x4d']) return model