""" Understanding Image Retrieval Re-Ranking: A Graph Neural Network Perspective Xuanmeng Zhang, Minyue Jiang, Zhedong Zheng, Xiao Tan, Errui Ding, Yi Yang Project Page : https://github.com/Xuanmeng-Zhang/gnn-re-ranking Paper: https://arxiv.org/abs/2012.07620v2 ====================================================================== On the Market-1501 dataset, we accelerate the re-ranking processing from 89.2s to 9.4ms with one K40m GPU, facilitating the real-time post-processing. Similarly, we observe that our method achieves comparable or even better retrieval results on the other four image retrieval benchmarks, i.e., VeRi-776, Oxford-5k, Paris-6k and University-1652, with limited time cost. """ from setuptools import Extension, setup import torch import torch.nn as nn from torch.autograd import Function from torch.utils.cpp_extension import CUDAExtension, BuildExtension setup( name='build_adjacency_matrix', ext_modules=[ CUDAExtension( 'build_adjacency_matrix', [ 'build_adjacency_matrix.cpp', 'build_adjacency_matrix_kernel.cu', ] ), ], cmdclass={'build_ext': BuildExtension} )