from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import re import sys import urllib import tarfile import zipfile import os.path as osp from scipy.io import loadmat import numpy as np import h5py from scipy.misc import imsave import copy from .bases import BaseImageDataset class SenseReID(BaseImageDataset): """SenseReID This dataset is used for test purpose only. Reference: Zhao et al. Spindle Net: Person Re-identification with Human Body Region Guided Feature Decomposition and Fusion. CVPR 2017. URL: https://drive.google.com/file/d/0B56OfSrVI8hubVJLTzkwV2VaOWM/view Dataset statistics: - train: 0 ids, 0 images - query: 522 ids, 1040 images - gallery: 1717 ids, 3388 images """ dataset_dir = 'sensereid' def __init__(self, root='data', verbose=True, **kwargs): super(SenseReID, self).__init__(root) self.dataset_dir = osp.join(self.root, self.dataset_dir) self.query_dir = osp.join(self.dataset_dir, 'SenseReID', 'test_probe') self.gallery_dir = osp.join(self.dataset_dir, 'SenseReID', 'test_gallery') required_files = [ self.dataset_dir, self.query_dir, self.gallery_dir ] self.check_before_run(required_files) query = self.process_dir(self.query_dir) gallery = self.process_dir(self.gallery_dir) train = copy.deepcopy(query) # dummy variable self.init_attributes(train, query, gallery, **kwargs) if verbose: self.print_dataset_statistics(self.train, self.query, self.gallery) def process_dir(self, dir_path): img_paths = glob.glob(osp.join(dir_path, '*.jpg')) dataset = [] for img_path in img_paths: img_name = osp.splitext(osp.basename(img_path))[0] pid, camid = img_name.split('_') pid, camid = int(pid), int(camid) dataset.append((img_path, pid, camid)) return dataset