from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import re import sys import urllib import tarfile import zipfile import os.path as osp from scipy.io import loadmat import numpy as np import h5py from scipy.misc import imsave from torchreid.utils.iotools import mkdir_if_missing, write_json, read_json from .bases import BaseImageDataset class VIPeR(BaseImageDataset): """VIPeR Reference: Gray et al. Evaluating appearance models for recognition, reacquisition, and tracking. PETS 2007. URL: https://vision.soe.ucsc.edu/node/178 Dataset statistics: # identities: 632 # images: 632 x 2 = 1264 # cameras: 2 """ dataset_dir = 'viper' def __init__(self, root='data', split_id=0, verbose=True, **kwargs): super(VIPeR, self).__init__(root) self.dataset_dir = osp.join(self.root, self.dataset_dir) self.dataset_url = 'http://users.soe.ucsc.edu/~manduchi/VIPeR.v1.0.zip' self.cam_a_dir = osp.join(self.dataset_dir, 'VIPeR', 'cam_a') self.cam_b_dir = osp.join(self.dataset_dir, 'VIPeR', 'cam_b') self.split_path = osp.join(self.dataset_dir, 'splits.json') self.download_data() required_files = [ self.dataset_dir, self.cam_a_dir, self.cam_b_dir ] self.check_before_run(required_files) self.prepare_split() splits = read_json(self.split_path) if split_id >= len(splits): raise ValueError('split_id exceeds range, received {}, but expected between 0 and {}'.format(split_id, len(splits)-1)) split = splits[split_id] train = split['train'] query = split['query'] # note: query and gallery share the same images gallery = split['gallery'] train = [tuple(item) for item in train] query = [tuple(item) for item in query] gallery = [tuple(item) for item in gallery] self.init_attributes(train, query, gallery, **kwargs) if verbose: self.print_dataset_statistics(self.train, self.query, self.gallery) def download_data(self): if osp.exists(self.dataset_dir): return print('Creating directory {}'.format(self.dataset_dir)) mkdir_if_missing(self.dataset_dir) fpath = osp.join(self.dataset_dir, osp.basename(self.dataset_url)) print('Downloading VIPeR dataset') urllib.urlretrieve(self.dataset_url, fpath) print('Extracting files') zip_ref = zipfile.ZipFile(fpath, 'r') zip_ref.extractall(self.dataset_dir) zip_ref.close() def prepare_split(self): if not osp.exists(self.split_path): print('Creating 10 random splits of train ids and test ids') cam_a_imgs = sorted(glob.glob(osp.join(self.cam_a_dir, '*.bmp'))) cam_b_imgs = sorted(glob.glob(osp.join(self.cam_b_dir, '*.bmp'))) assert len(cam_a_imgs) == len(cam_b_imgs) num_pids = len(cam_a_imgs) print('Number of identities: {}'.format(num_pids)) num_train_pids = num_pids // 2 """ In total, there will be 20 splits because each random split creates two sub-splits, one using cameraA as query and cameraB as gallery while the other using cameraB as query and cameraA as gallery. Therefore, results should be averaged over 20 splits (split_id=0~19). In practice, a model trained on split_id=0 can be applied to split_id=0&1 as split_id=0&1 share the same training data (so on and so forth). """ splits = [] for _ in range(10): order = np.arange(num_pids) np.random.shuffle(order) train_idxs = order[:num_train_pids] test_idxs = order[num_train_pids:] assert not bool(set(train_idxs) & set(test_idxs)), 'Error: train and test overlap' train = [] for pid, idx in enumerate(train_idxs): cam_a_img = cam_a_imgs[idx] cam_b_img = cam_b_imgs[idx] train.append((cam_a_img, pid, 0)) train.append((cam_b_img, pid, 1)) test_a = [] test_b = [] for pid, idx in enumerate(test_idxs): cam_a_img = cam_a_imgs[idx] cam_b_img = cam_b_imgs[idx] test_a.append((cam_a_img, pid, 0)) test_b.append((cam_b_img, pid, 1)) # use cameraA as query and cameraB as gallery split = { 'train': train, 'query': test_a, 'gallery': test_b, 'num_train_pids': num_train_pids, 'num_query_pids': num_pids - num_train_pids, 'num_gallery_pids': num_pids - num_train_pids } splits.append(split) # use cameraB as query and cameraA as gallery split = { 'train': train, 'query': test_b, 'gallery': test_a, 'num_train_pids': num_train_pids, 'num_query_pids': num_pids - num_train_pids, 'num_gallery_pids': num_pids - num_train_pids } splits.append(split) print('Totally {} splits are created'.format(len(splits))) write_json(splits, self.split_path) print('Split file saved to {}'.format(self.split_path))