from __future__ import absolute_import from __future__ import division import torch import torch.nn as nn class CrossEntropyLoss(nn.Module): """Cross entropy loss with label smoothing regularizer. Reference: Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016. Equation: y = (1 - epsilon) * y + epsilon / K. Args: - num_classes (int): number of classes - epsilon (float): weight - use_gpu (bool): whether to use gpu devices - label_smooth (bool): whether to apply label smoothing, if False, epsilon = 0 """ def __init__(self, num_classes, epsilon=0.1, use_gpu=True, label_smooth=True): super(CrossEntropyLoss, self).__init__() self.num_classes = num_classes self.epsilon = epsilon if label_smooth else 0 self.use_gpu = use_gpu self.logsoftmax = nn.LogSoftmax(dim=1) def forward(self, inputs, targets): """ Args: - inputs: prediction matrix (before softmax) with shape (batch_size, num_classes) - targets: ground truth labels with shape (num_classes) """ log_probs = self.logsoftmax(inputs) targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).data.cpu(), 1) if self.use_gpu: targets = targets.cuda() targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes loss = (- targets * log_probs).mean(0).sum() return loss