from __future__ import absolute_import from __future__ import division from __future__ import print_function from PIL import Image import random import math from collections import deque import torch from torchvision.transforms import * class Random2DTranslation(object): """Randomly translates the input image with a probability. Specifically, given a predefined shape (height, width), the input is first resized with a factor of 1.125, leading to (height*1.125, width*1.125), then a random crop is performed. Such operation is done with a probability. Args: height (int): target image height. width (int): target image width. p (float, optional): probability that this operation takes place. Default is 0.5. interpolation (int, optional): desired interpolation. Default is ``PIL.Image.BILINEAR`` """ def __init__(self, height, width, p=0.5, interpolation=Image.BILINEAR): self.height = height self.width = width self.p = p self.interpolation = interpolation def __call__(self, img): if random.uniform(0, 1) > self.p: return img.resize((self.width, self.height), self.interpolation) new_width, new_height = int(round(self.width * 1.125)), int(round(self.height * 1.125)) resized_img = img.resize((new_width, new_height), self.interpolation) x_maxrange = new_width - self.width y_maxrange = new_height - self.height x1 = int(round(random.uniform(0, x_maxrange))) y1 = int(round(random.uniform(0, y_maxrange))) croped_img = resized_img.crop((x1, y1, x1 + self.width, y1 + self.height)) return croped_img class RandomErasing(object): """Randomly erases an image patch. Origin: ``_ Reference: Zhong et al. Random Erasing Data Augmentation. Args: probability (float, optional): probability that this operation takes place. Default is 0.5. sl (float, optional): min erasing area. sh (float, optional): max erasing area. r1 (float, optional): min aspect ratio. mean (list, optional): erasing value. """ def __init__(self, probability=0.5, sl=0.02, sh=0.4, r1=0.3, mean=[0.4914, 0.4822, 0.4465]): self.probability = probability self.mean = mean self.sl = sl self.sh = sh self.r1 = r1 def __call__(self, img): if random.uniform(0, 1) > self.probability: return img for attempt in range(100): area = img.size()[1] * img.size()[2] target_area = random.uniform(self.sl, self.sh) * area aspect_ratio = random.uniform(self.r1, 1/self.r1) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < img.size()[2] and h < img.size()[1]: x1 = random.randint(0, img.size()[1] - h) y1 = random.randint(0, img.size()[2] - w) if img.size()[0] == 3: img[0, x1:x1+h, y1:y1+w] = self.mean[0] img[1, x1:x1+h, y1:y1+w] = self.mean[1] img[2, x1:x1+h, y1:y1+w] = self.mean[2] else: img[0, x1:x1+h, y1:y1+w] = self.mean[0] return img return img class ColorAugmentation(object): """Randomly alters the intensities of RGB channels. Reference: Krizhevsky et al. ImageNet Classification with Deep ConvolutionalNeural Networks. NIPS 2012. Args: p (float, optional): probability that this operation takes place. Default is 0.5. """ def __init__(self, p=0.5): self.p = p self.eig_vec = torch.Tensor([ [0.4009, 0.7192, -0.5675], [-0.8140, -0.0045, -0.5808], [0.4203, -0.6948, -0.5836], ]) self.eig_val = torch.Tensor([[0.2175, 0.0188, 0.0045]]) def _check_input(self, tensor): assert tensor.dim() == 3 and tensor.size(0) == 3 def __call__(self, tensor): if random.uniform(0, 1) > self.p: return tensor alpha = torch.normal(mean=torch.zeros_like(self.eig_val)) * 0.1 quatity = torch.mm(self.eig_val * alpha, self.eig_vec) tensor = tensor + quatity.view(3, 1, 1) return tensor class RandomPatch(object): """Random patch data augmentation. There is a patch pool that stores randomly extracted pathces from person images. For each input image, RandomPatch 1) extracts a random patch and stores the patch in the patch pool; 2) randomly selects a patch from the patch pool and pastes it on the input (at random position) to simulate occlusion. Reference: - Zhou et al. Omni-Scale Feature Learning for Person Re-Identification. ICCV, 2019. - Zhou et al. Learning Generalisable Omni-Scale Representations for Person Re-Identification. arXiv preprint, 2019. """ def __init__(self, prob_happen=0.5, pool_capacity=50000, min_sample_size=100, patch_min_area=0.01, patch_max_area=0.5, patch_min_ratio=0.1, prob_rotate=0.5, prob_flip_leftright=0.5, ): self.prob_happen = prob_happen self.patch_min_area = patch_min_area self.patch_max_area = patch_max_area self.patch_min_ratio = patch_min_ratio self.prob_rotate = prob_rotate self.prob_flip_leftright = prob_flip_leftright self.patchpool = deque(maxlen=pool_capacity) self.min_sample_size = min_sample_size def generate_wh(self, W, H): area = W * H for attempt in range(100): target_area = random.uniform(self.patch_min_area, self.patch_max_area) * area aspect_ratio = random.uniform(self.patch_min_ratio, 1./self.patch_min_ratio) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < W and h < H: return w, h return None, None def transform_patch(self, patch): if random.uniform(0, 1) > self.prob_flip_leftright: patch = patch.transpose(Image.FLIP_LEFT_RIGHT) if random.uniform(0, 1) > self.prob_rotate: patch = patch.rotate(random.randint(-10, 10)) return patch def __call__(self, img): W, H = img.size # original image size # collect new patch w, h = self.generate_wh(W, H) if w is not None and h is not None: x1 = random.randint(0, W - w) y1 = random.randint(0, H - h) new_patch = img.crop((x1, y1, x1 + w, y1 + h)) self.patchpool.append(new_patch) if len(self.patchpool) < self.min_sample_size: return img if random.uniform(0, 1) > self.prob_happen: return img # paste a randomly selected patch on a random position patch = random.sample(self.patchpool, 1)[0] patchW, patchH = patch.size x1 = random.randint(0, W - patchW) y1 = random.randint(0, H - patchH) patch = self.transform_patch(patch) img.paste(patch, (x1, y1)) return img def build_transforms(height, width, transforms='random_flip', norm_mean=[0.485, 0.456, 0.406], norm_std=[0.229, 0.224, 0.225], **kwargs): """Builds train and test transform functions. Args: height (int): target image height. width (int): target image width. transforms (str or list of str, optional): transformations applied to model training. Default is 'random_flip'. norm_mean (list or None, optional): normalization mean values. Default is ImageNet means. norm_std (list or None, optional): normalization standard deviation values. Default is ImageNet standard deviation values. """ if transforms is None: transforms = [] if isinstance(transforms, str): transforms = [transforms] if not isinstance(transforms, list): raise ValueError('transforms must be a list of strings, but found to be {}'.format(type(transforms))) if len(transforms) > 0: transforms = [t.lower() for t in transforms] if norm_mean is None or norm_std is None: norm_mean = [0.485, 0.456, 0.406] # imagenet mean norm_std = [0.229, 0.224, 0.225] # imagenet std normalize = Normalize(mean=norm_mean, std=norm_std) print('Building train transforms ...') transform_tr = [] transform_tr += [Resize((height, width))] print('+ resize to {}x{}'.format(height, width)) if 'random_flip' in transforms: print('+ random flip') transform_tr += [RandomHorizontalFlip()] if 'random_crop' in transforms: print('+ random crop (enlarge to {}x{} and ' \ 'crop {}x{})'.format(int(round(height*1.125)), int(round(width*1.125)), height, width)) transform_tr += [Random2DTranslation(height, width)] if 'random_patch' in transforms: print('+ random patch') transform_tr += [RandomPatch()] if 'color_jitter' in transforms: print('+ color jitter') transform_tr += [ColorJitter(brightness=0.2, contrast=0.15, saturation=0, hue=0)] print('+ to torch tensor of range [0, 1]') transform_tr += [ToTensor()] print('+ normalization (mean={}, std={})'.format(norm_mean, norm_std)) transform_tr += [normalize] if 'random_erase' in transforms: print('+ random erase') transform_tr += [RandomErasing(mean=norm_mean)] transform_tr = Compose(transform_tr) print('Building test transforms ...') print('+ resize to {}x{}'.format(height, width)) print('+ to torch tensor of range [0, 1]') print('+ normalization (mean={}, std={})'.format(norm_mean, norm_std)) transform_te = Compose([ Resize((height, width)), ToTensor(), normalize, ]) return transform_tr, transform_te