from __future__ import print_function, absolute_import import os import glob import re import sys import urllib import tarfile import zipfile import os.path as osp from scipy.io import loadmat import numpy as np import h5py from scipy.misc import imsave from utils.iotools import mkdir_if_missing, write_json, read_json class PRID450S(object): """ PRID450S Reference: Roth et al. Mahalanobis Distance Learning for Person Re-Identification. PR 2014. URL: https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid450s/ Dataset statistics: # identities: 450 # images: 900 # cameras: 2 """ dataset_dir = 'prid450s' def __init__(self, root='data', split_id=0, min_seq_len=0, **kwargs): self.dataset_dir = osp.join(root, self.dataset_dir) self.dataset_url = 'https://files.icg.tugraz.at/f/8c709245bb/?raw=1' self.split_path = osp.join(self.dataset_dir, 'splits.json') self.cam_a_path = osp.join(self.dataset_dir, 'cam_a') self.cam_b_path = osp.join(self.dataset_dir, 'cam_b') self._download_data() self._check_before_run() self._prepare_split() splits = read_json(self.split_path) if split_id >= len(splits): raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1)) split = splits[split_id] train = split['train'] query = split['query'] gallery = split['gallery'] train = [tuple(item) for item in train] query = [tuple(item) for item in query] gallery = [tuple(item) for item in gallery] num_train_pids = split['num_train_pids'] num_query_pids = split['num_query_pids'] num_gallery_pids = split['num_gallery_pids'] num_train_imgs = len(train) num_query_imgs = len(query) num_gallery_imgs = len(gallery) num_total_pids = num_train_pids + num_query_pids num_total_imgs = num_train_imgs + num_query_imgs print("=> PRID450S loaded") print("Dataset statistics:") print(" ------------------------------") print(" subset | # ids | # images") print(" ------------------------------") print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_imgs)) print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_imgs)) print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs)) print(" ------------------------------") print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_imgs)) print(" ------------------------------") self.train = train self.query = query self.gallery = gallery self.num_train_pids = num_train_pids self.num_query_pids = num_query_pids self.num_gallery_pids = num_gallery_pids def _check_before_run(self): """Check if all files are available before going deeper""" if not osp.exists(self.dataset_dir): raise RuntimeError("'{}' is not available".format(self.dataset_dir)) if not osp.exists(self.cam_a_path): raise RuntimeError("'{}' is not available".format(self.cam_a_path)) if not osp.exists(self.cam_b_path): raise RuntimeError("'{}' is not available".format(self.cam_b_path)) def _download_data(self): if osp.exists(self.dataset_dir): print("This dataset has been downloaded.") return print("Creating directory {}".format(self.dataset_dir)) mkdir_if_missing(self.dataset_dir) fpath = osp.join(self.dataset_dir, 'prid_450s.zip') print("Downloading PRID450S dataset") urllib.urlretrieve(self.dataset_url, fpath) print("Extracting files") zip_ref = zipfile.ZipFile(fpath, 'r') zip_ref.extractall(self.dataset_dir) zip_ref.close() def _prepare_split(self): if not osp.exists(self.split_path): cam_a_imgs = sorted(glob.glob(osp.join(self.cam_a_path, 'img_*.png'))) cam_b_imgs = sorted(glob.glob(osp.join(self.cam_b_path, 'img_*.png'))) assert len(cam_a_imgs) == len(cam_b_imgs) num_pids = len(cam_a_imgs) num_train_pids = num_pids // 2 splits = [] for _ in range(10): order = np.arange(num_pids) np.random.shuffle(order) train_idxs = np.sort(order[:num_train_pids]) idx2label = {idx: label for label, idx in enumerate(train_idxs)} train, test = [], [] # processing camera a for img_path in cam_a_imgs: img_name = osp.basename(img_path) img_idx = int(img_name.split('_')[1].split('.')[0]) if img_idx in train_idxs: train.append((img_path, idx2label[img_idx], 0)) else: test.append((img_path, img_idx, 0)) # processing camera b for img_path in cam_b_imgs: img_name = osp.basename(img_path) img_idx = int(img_name.split('_')[1].split('.')[0]) if img_idx in train_idxs: train.append((img_path, idx2label[img_idx], 1)) else: test.append((img_path, img_idx, 1)) split = {'train': train, 'query': test, 'gallery': test, 'num_train_pids': num_train_pids, 'num_query_pids': num_pids - num_train_pids, 'num_gallery_pids': num_pids - num_train_pids, } splits.append(split) print("Totally {} splits are created".format(len(splits))) write_json(splits, self.split_path) print("Split file saved to {}".format(self.split_path)) print("Splits created")