from __future__ import print_function, absolute_import import os import glob import re import sys import urllib import tarfile import zipfile import os.path as osp from scipy.io import loadmat import numpy as np import h5py from scipy.misc import imsave from utils.iotools import mkdir_if_missing, write_json, read_json from .base import BaseImgDataset class CUHK01(BaseImgDataset): """ CUHK01 Reference: Li et al. Human Reidentification with Transferred Metric Learning. ACCV 2012. URL: http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html Dataset statistics: # identities: 971 # images: 3884 # cameras: 4 """ dataset_dir = 'cuhk01' def __init__(self, root='data', split_id=0, verbose=True, use_lmdb=False, **kwargs): super(CUHK01, self).__init__() self.dataset_dir = osp.join(root, self.dataset_dir) self.zip_path = osp.join(self.dataset_dir, 'CUHK01.zip') self.campus_dir = osp.join(self.dataset_dir, 'campus') self.split_path = osp.join(self.dataset_dir, 'splits.json') self._extract_file() self._check_before_run() self._prepare_split() splits = read_json(self.split_path) if split_id >= len(splits): raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1)) split = splits[split_id] train = split['train'] query = split['query'] gallery = split['gallery'] train = [tuple(item) for item in train] query = [tuple(item) for item in query] gallery = [tuple(item) for item in gallery] num_train_pids = split['num_train_pids'] num_query_pids = split['num_query_pids'] num_gallery_pids = split['num_gallery_pids'] num_train_imgs = len(train) num_query_imgs = len(query) num_gallery_imgs = len(gallery) num_total_pids = num_train_pids + num_query_pids num_total_imgs = num_train_imgs + num_query_imgs if verbose: print("=> CUHK01 loaded") print("Dataset statistics:") print(" ------------------------------") print(" subset | # ids | # images") print(" ------------------------------") print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_imgs)) print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_imgs)) print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs)) print(" ------------------------------") print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_imgs)) print(" ------------------------------") self.train = train self.query = query self.gallery = gallery self.num_train_pids = num_train_pids self.num_query_pids = num_query_pids self.num_gallery_pids = num_gallery_pids if use_lmdb: self.generate_lmdb() def _extract_file(self): if not osp.exists(self.campus_dir): print("Extracting files") zip_ref = zipfile.ZipFile(self.zip_path, 'r') zip_ref.extractall(self.dataset_dir) zip_ref.close() print("Files extracted") def _check_before_run(self): """Check if all files are available before going deeper""" if not osp.exists(self.dataset_dir): raise RuntimeError("'{}' is not available".format(self.dataset_dir)) if not osp.exists(self.campus_dir): raise RuntimeError("'{}' is not available".format(self.campus_dir)) def _prepare_split(self): """ Image name format: 0001001.png, where first four digits represent identity and last four digits represent cameras. Camera 1&2 are considered the same view and camera 3&4 are considered the same view. """ if not osp.exists(self.split_path): print("Creating 10 random splits") img_paths = sorted(glob.glob(osp.join(self.campus_dir, '*.png'))) img_list = [] pid_container = set() for img_path in img_paths: img_name = osp.basename(img_path) pid = int(img_name[:4]) - 1 camid = (int(img_name[4:7]) - 1) // 2 img_list.append((img_path, pid, camid)) pid_container.add(pid) num_pids = len(pid_container) num_train_pids = num_pids // 2 splits = [] for _ in range(10): order = np.arange(num_pids) np.random.shuffle(order) train_idxs = order[:num_train_pids] train_idxs = np.sort(train_idxs) idx2label = {idx: label for label, idx in enumerate(train_idxs)} train, test = [], [] for img_path, pid, camid in img_list: if pid in train_idxs: train.append((img_path, idx2label[pid], camid)) else: test.append((img_path, pid, camid)) split = {'train': train, 'query': test, 'gallery': test, 'num_train_pids': num_train_pids, 'num_query_pids': num_pids - num_train_pids, 'num_gallery_pids': num_pids - num_train_pids, } splits.append(split) print("Totally {} splits are created".format(len(splits))) write_json(splits, self.split_path) print("Split file saved to {}".format(self.split_path)) print("Splits created")