from __future__ import print_function, absolute_import import os import glob import re import sys import urllib import tarfile import zipfile import os.path as osp from scipy.io import loadmat import numpy as np import h5py from scipy.misc import imsave from utils.iotools import mkdir_if_missing, write_json, read_json class PRID2011(object): """ PRID2011 Reference: Hirzer et al. Person Re-Identification by Descriptive and Discriminative Classification. SCIA 2011. URL: https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/PRID11/ Dataset statistics: # identities: 200 # tracklets: 400 # cameras: 2 """ dataset_dir = 'prid2011' def __init__(self, root='data', split_id=0, min_seq_len=0, verbose=True, **kwargs): self.dataset_dir = osp.join(root, self.dataset_dir) self.split_path = osp.join(self.dataset_dir, 'splits_prid2011.json') self.cam_a_path = osp.join(self.dataset_dir, 'prid_2011', 'multi_shot', 'cam_a') self.cam_b_path = osp.join(self.dataset_dir, 'prid_2011', 'multi_shot', 'cam_b') self._check_before_run() splits = read_json(self.split_path) if split_id >= len(splits): raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1)) split = splits[split_id] train_dirs, test_dirs = split['train'], split['test'] print("# train identites: {}, # test identites {}".format(len(train_dirs), len(test_dirs))) train, num_train_tracklets, num_train_pids, num_imgs_train = \ self._process_data(train_dirs, cam1=True, cam2=True) query, num_query_tracklets, num_query_pids, num_imgs_query = \ self._process_data(test_dirs, cam1=True, cam2=False) gallery, num_gallery_tracklets, num_gallery_pids, num_imgs_gallery = \ self._process_data(test_dirs, cam1=False, cam2=True) num_imgs_per_tracklet = num_imgs_train + num_imgs_query + num_imgs_gallery min_num = np.min(num_imgs_per_tracklet) max_num = np.max(num_imgs_per_tracklet) avg_num = np.mean(num_imgs_per_tracklet) num_total_pids = num_train_pids + num_query_pids num_total_tracklets = num_train_tracklets + num_query_tracklets + num_gallery_tracklets if verbose: print("=> PRID2011 loaded") print("Dataset statistics:") print(" ------------------------------") print(" subset | # ids | # tracklets") print(" ------------------------------") print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_tracklets)) print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_tracklets)) print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_tracklets)) print(" ------------------------------") print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_tracklets)) print(" number of images per tracklet: {} ~ {}, average {:.1f}".format(min_num, max_num, avg_num)) print(" ------------------------------") self.train = train self.query = query self.gallery = gallery self.num_train_pids = num_train_pids self.num_query_pids = num_query_pids self.num_gallery_pids = num_gallery_pids def _check_before_run(self): """Check if all files are available before going deeper""" if not osp.exists(self.dataset_dir): raise RuntimeError("'{}' is not available".format(self.dataset_dir)) def _process_data(self, dirnames, cam1=True, cam2=True): tracklets = [] num_imgs_per_tracklet = [] dirname2pid = {dirname:i for i, dirname in enumerate(dirnames)} for dirname in dirnames: if cam1: person_dir = osp.join(self.cam_a_path, dirname) img_names = glob.glob(osp.join(person_dir, '*.png')) assert len(img_names) > 0 img_names = tuple(img_names) pid = dirname2pid[dirname] tracklets.append((img_names, pid, 0)) num_imgs_per_tracklet.append(len(img_names)) if cam2: person_dir = osp.join(self.cam_b_path, dirname) img_names = glob.glob(osp.join(person_dir, '*.png')) assert len(img_names) > 0 img_names = tuple(img_names) pid = dirname2pid[dirname] tracklets.append((img_names, pid, 1)) num_imgs_per_tracklet.append(len(img_names)) num_tracklets = len(tracklets) num_pids = len(dirnames) return tracklets, num_tracklets, num_pids, num_imgs_per_tracklet