from __future__ import absolute_import from __future__ import division import torch from torch import nn from torch.nn import functional as F import torchvision import torch.utils.model_zoo as model_zoo __all__ = ['pcb_p6', 'pcb_p4'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class DimReduceLayer(nn.Module): def __init__(self, in_channels, out_channels, nonlinear): super(DimReduceLayer, self).__init__() layers = [] layers.append(nn.Conv2d(in_channels, out_channels, 1, stride=1, padding=0, bias=False)) layers.append(nn.BatchNorm2d(out_channels)) if nonlinear == 'relu': layers.append(nn.ReLU(inplace=True)) elif nonlinear == 'leakyrelu': layers.append(nn.LeakyReLU(0.1)) self.layers = nn.Sequential(*layers) def forward(self, x): return self.layers(x) class PCB(nn.Module): """ Part-based Convolutional Baseline Reference: Sun et al. Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline). ECCV 2018. """ def __init__(self, num_classes, loss, block, layers, parts=6, reduced_dim=256, nonlinear='relu', **kwargs): self.inplanes = 64 super(PCB, self).__init__() self.loss = loss self.parts = parts self.feature_dim = 512 * block.expansion # backbone network self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1) # pcb layers self.parts_avgpool = nn.AdaptiveAvgPool2d((self.parts, 1)) self.dropout = nn.Dropout(p=0.5) self.conv5 = DimReduceLayer(512 * block.expansion, reduced_dim, nonlinear=nonlinear) self.feature_dim = reduced_dim self.classifier = nn.ModuleList([nn.Linear(self.feature_dim, num_classes) for _ in range(self.parts)]) self._init_params() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _init_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) def featuremaps(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def forward(self, x): f = self.featuremaps(x) v_g = self.parts_avgpool(f) v_h = self.conv5(self.dropout(v_g)) if not self.training: v_g = F.normalize(v_g, p=2, dim=1) return v_g.view(v_g.size(0), -1) y = [] for i in range(self.parts): v_h_i = v_h[:, :, i, :] v_h_i = v_h_i.view(v_h_i.size(0), -1) y_i = self.classifier[i](v_h_i) y.append(y_i) if self.loss == {'xent'}: return y elif self.loss == {'xent', 'htri'}: v_g = F.normalize(v_g, p=2, dim=1) return y, v_g.view(v_g.size(0), -1) else: raise KeyError("Unsupported loss: {}".format(self.loss)) def init_pretrained_weights(model, model_url): """ Initialize model with pretrained weights. Layers that don't match with pretrained layers in name or size are kept unchanged. """ pretrain_dict = model_zoo.load_url(model_url) model_dict = model.state_dict() pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()} model_dict.update(pretrain_dict) model.load_state_dict(model_dict) print("Initialized model with pretrained weights from {}".format(model_url)) def pcb_p6(num_classes, loss, pretrained='imagenet', **kwargs): model = PCB( num_classes=num_classes, loss=loss, block=Bottleneck, layers=[3, 4, 6, 3], last_stride=1, parts=6, reduced_dim=256, nonlinear='relu', **kwargs ) if pretrained == 'imagenet': init_pretrained_weights(model, model_urls['resnet50']) return model def pcb_p4(num_classes, loss, pretrained='imagenet', **kwargs): model = PCB( num_classes=num_classes, loss=loss, block=Bottleneck, layers=[3, 4, 6, 3], last_stride=1, parts=4, reduced_dim=256, nonlinear='relu', **kwargs ) if pretrained == 'imagenet': init_pretrained_weights(model, model_urls['resnet50']) return model