# deep-person-reid This repo contains [pytorch](http://pytorch.org/) implementations of deep person re-identification approaches. We will actively maintain this repo. ## Pretrained models ## Prepare data ## Train ## Test ## Results ### Setup * Image size: 256-by-128
* Optimizer: Adam [6]
* Loss functions:
xent: cross entropy + label smoothing regularizer [5]
htri: triplet loss with hard positive/negative mining [4]
### Market1501 | Model | Size (M) | Loss | Rank-1 / -5 / -10 (%) | mAP (%) | Reported Rank | Reported mAP | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | ResNet50 [1] | 25.05 | xent | 85.8 / 94.4 / 96.3 | 70.1 | | | | ResNet50M [2] | 30.01 | xent | 88.8 / 95.3 / 97.0 | 74.4 | 89.9 / - / - | 75.6 | | DenseNet121 [3] | 7.72 | xent | | | | | ## References [1] [He et al. Deep Residual Learning for Image Recognition. CVPR 2016.](https://arxiv.org/abs/1512.03385)
[2] [Yu et al. The Devil is in the Middle: Exploiting Mid-level Representations for Cross-Domain Instance Matching. arXiv:1711.08106.](https://arxiv.org/abs/1711.08106)
[3] [Huang et al. Densely Connected Convolutional Networks. CVPR 2017.](https://arxiv.org/abs/1608.06993)
[4] [Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.](https://arxiv.org/abs/1703.07737)
[5] [Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.](https://arxiv.org/abs/1512.00567)
[6] [Kingma and Ba. Adam: A Method for Stochastic Optimization. ICLR 2015.](https://arxiv.org/abs/1412.6980)