Source code for torchreid.models.mlfn

from __future__ import absolute_import
from __future__ import division

__all__ = ['mlfn']

import torch
from torch import nn
from torch.nn import functional as F
import torchvision
import torch.utils.model_zoo as model_zoo


model_urls = {
    # training epoch = 5, top1 = 51.6
    'imagenet': 'http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/imagenet-pretrained/mlfn-9cb5a267.pth.tar',
}


class MLFNBlock(nn.Module):
    
    def __init__(self, in_channels, out_channels, stride, fsm_channels, groups=32):
        super(MLFNBlock, self).__init__()
        self.groups = groups
        mid_channels = out_channels // 2
        
        # Factor Modules
        self.fm_conv1 = nn.Conv2d(in_channels, mid_channels, 1, bias=False)
        self.fm_bn1 = nn.BatchNorm2d(mid_channels)
        self.fm_conv2 = nn.Conv2d(mid_channels, mid_channels, 3, stride=stride, padding=1, bias=False, groups=self.groups)
        self.fm_bn2 = nn.BatchNorm2d(mid_channels)
        self.fm_conv3 = nn.Conv2d(mid_channels, out_channels, 1, bias=False)
        self.fm_bn3 = nn.BatchNorm2d(out_channels)
        
        # Factor Selection Module
        self.fsm = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels, fsm_channels[0], 1),
            nn.BatchNorm2d(fsm_channels[0]),
            nn.ReLU(inplace=True),
            nn.Conv2d(fsm_channels[0], fsm_channels[1], 1),
            nn.BatchNorm2d(fsm_channels[1]),
            nn.ReLU(inplace=True),
            nn.Conv2d(fsm_channels[1], self.groups, 1),
            nn.BatchNorm2d(self.groups),
            nn.Sigmoid(),
        )

        self.downsample = None
        if in_channels != out_channels or stride > 1:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, 1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels),
            )

    def forward(self, x):
        residual = x
        s = self.fsm(x)
        
        # reduce dimension
        x = self.fm_conv1(x)
        x = self.fm_bn1(x)
        x = F.relu(x, inplace=True)

        # group convolution
        x = self.fm_conv2(x)
        x = self.fm_bn2(x)
        x = F.relu(x, inplace=True)

        # factor selection
        b, c = x.size(0), x.size(1)
        n = c // self.groups
        ss = s.repeat(1, n, 1, 1) # from (b, g, 1, 1) to (b, g*n=c, 1, 1)
        ss = ss.view(b, n, self.groups, 1, 1)
        ss = ss.permute(0, 2, 1, 3, 4).contiguous()
        ss = ss.view(b, c, 1, 1)
        x = ss * x

        # recover dimension
        x = self.fm_conv3(x)
        x = self.fm_bn3(x)
        x = F.relu(x, inplace=True)

        if self.downsample is not None:
            residual = self.downsample(residual)

        return F.relu(residual + x, inplace=True), s


[docs]class MLFN(nn.Module): """Multi-Level Factorisation Net. Reference: Chang et al. Multi-Level Factorisation Net for Person Re-Identification. CVPR 2018. Public keys: - ``mlfn``: MLFN (Multi-Level Factorisation Net). """ def __init__(self, num_classes, loss='softmax', groups=32, channels=[64, 256, 512, 1024, 2048], embed_dim=1024, **kwargs): super(MLFN, self).__init__() self.loss = loss self.groups = groups # first convolutional layer self.conv1 = nn.Conv2d(3, channels[0], 7, stride=2, padding=3) self.bn1 = nn.BatchNorm2d(channels[0]) self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) # main body self.feature = nn.ModuleList([ # layer 1-3 MLFNBlock(channels[0], channels[1], 1, [128, 64], self.groups), MLFNBlock(channels[1], channels[1], 1, [128, 64], self.groups), MLFNBlock(channels[1], channels[1], 1, [128, 64], self.groups), # layer 4-7 MLFNBlock(channels[1], channels[2], 2, [256, 128], self.groups), MLFNBlock(channels[2], channels[2], 1, [256, 128], self.groups), MLFNBlock(channels[2], channels[2], 1, [256, 128], self.groups), MLFNBlock(channels[2], channels[2], 1, [256, 128], self.groups), # layer 8-13 MLFNBlock(channels[2], channels[3], 2, [512, 128], self.groups), MLFNBlock(channels[3], channels[3], 1, [512, 128], self.groups), MLFNBlock(channels[3], channels[3], 1, [512, 128], self.groups), MLFNBlock(channels[3], channels[3], 1, [512, 128], self.groups), MLFNBlock(channels[3], channels[3], 1, [512, 128], self.groups), MLFNBlock(channels[3], channels[3], 1, [512, 128], self.groups), # layer 14-16 MLFNBlock(channels[3], channels[4], 2, [512, 128], self.groups), MLFNBlock(channels[4], channels[4], 1, [512, 128], self.groups), MLFNBlock(channels[4], channels[4], 1, [512, 128], self.groups), ]) self.global_avgpool = nn.AdaptiveAvgPool2d(1) # projection functions self.fc_x = nn.Sequential( nn.Conv2d(channels[4], embed_dim, 1, bias=False), nn.BatchNorm2d(embed_dim), nn.ReLU(inplace=True), ) self.fc_s = nn.Sequential( nn.Conv2d(self.groups * 16, embed_dim, 1, bias=False), nn.BatchNorm2d(embed_dim), nn.ReLU(inplace=True), ) self.classifier = nn.Linear(embed_dim, num_classes) self.init_params() def init_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x, inplace=True) x = self.maxpool(x) s_hat = [] for block in self.feature: x, s = block(x) s_hat.append(s) s_hat = torch.cat(s_hat, 1) x = self.global_avgpool(x) x = self.fc_x(x) s_hat = self.fc_s(s_hat) v = (x + s_hat) * 0.5 v = v.view(v.size(0), -1) if not self.training: return v y = self.classifier(v) if self.loss == 'softmax': return y elif self.loss == 'triplet': return y, v else: raise KeyError('Unsupported loss: {}'.format(self.loss))
def init_pretrained_weights(model, model_url): """Initializes model with pretrained weights. Layers that don't match with pretrained layers in name or size are kept unchanged. """ pretrain_dict = model_zoo.load_url(model_url) model_dict = model.state_dict() pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()} model_dict.update(pretrain_dict) model.load_state_dict(model_dict) print('Initialized model with pretrained weights from {}'.format(model_url)) def mlfn(num_classes, loss='softmax', pretrained=True, **kwargs): model = MLFN(num_classes, loss, **kwargs) if pretrained: init_pretrained_weights(model, model_urls['imagenet']) return model