from __future__ import absolute_import from __future__ import division import torch import torch.nn as nn class TripletLoss(nn.Module): """Triplet loss with hard positive/negative mining. Reference: Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737. Code imported from https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py. Args: - margin (float): margin for triplet. """ def __init__(self, margin=0.3): super(TripletLoss, self).__init__() self.margin = margin self.ranking_loss = nn.MarginRankingLoss(margin=margin) def forward(self, inputs, targets): """ Args: - inputs: feature matrix with shape (batch_size, feat_dim) - targets: ground truth labels with shape (num_classes) """ n = inputs.size(0) # Compute pairwise distance, replace by the official when merged dist = torch.pow(inputs, 2).sum(dim=1, keepdim=True).expand(n, n) dist = dist + dist.t() dist.addmm_(1, -2, inputs, inputs.t()) dist = dist.clamp(min=1e-12).sqrt() # for numerical stability # For each anchor, find the hardest positive and negative mask = targets.expand(n, n).eq(targets.expand(n, n).t()) dist_ap, dist_an = [], [] for i in range(n): dist_ap.append(dist[i][mask[i]].max().unsqueeze(0)) dist_an.append(dist[i][mask[i] == 0].min().unsqueeze(0)) dist_ap = torch.cat(dist_ap) dist_an = torch.cat(dist_an) # Compute ranking hinge loss y = torch.ones_like(dist_an) loss = self.ranking_loss(dist_an, dist_ap, y) return loss