Torchreid is a library built on `PyTorch `_ for deep-learning person re-identification.
It features:
- multi-GPU training
- support both image- and video-reid
- end-to-end training and evaluation
- incredibly easy preparation of reid datasets
- multi-dataset training
- cross-dataset evaluation
- standard protocol used by most research papers
- highly extensible (easy to add models, datasets, training methods, etc.)
- implementations of state-of-the-art deep reid models
- access to pretrained reid models
- advanced training techniques
- visualization of ranking results
Installation
---------------
1. Install step 1
#. Install step 2
#. Install step 3
News
------
xx-xx-2019: Torchreid documentation is out!
Get started: 30 seconds to Torchreid
-------------------------------------
1. Import ``torchreid``
.. code-block:: python
import torchreid
2. Load data manager
.. code-block:: python
datamanager = torchreid.data.ImageDataManager(
root='reid-data',
sources='market1501',
height=256,
width=128,
batch_size=32,
market1501_500k=False
)
3 Build model, optimizer and lr_scheduler
.. code-block:: python
model = torchreid.models.build_model(
name='resnet50',
num_classes=datamanager.num_train_pids,
loss='softmax',
pretrained=True
)
model = model.cuda() # move model to gpu
optimizer = torchreid.optim.build_optimizer(
model,
optim='adam',
lr=0.0003
)
scheduler = torchreid.optim.build_lr_scheduler(
optimizer,
lr_scheduler='single_step',
stepsize=20
)
4. Build engine
.. code-block:: python
engine = torchreid.engine.ImageSoftmaxEngine(
datamanager,
model,
optimizer=optimizer,
scheduler=scheduler,
label_smooth=True
)
5. Run training and test
.. code-block:: python
engine.run(
save_dir='log/resnet50',
max_epoch=60,
eval_freq=10,
print_freq=10,
test_only=False
)
Datasets
--------
Image-reid datasets
^^^^^^^^^^^^^^^^^^^^^
- `Market1501 `_
- `CUHK03 `_
- `DukeMTMC-reID `_
- `MSMT17 `_
- `VIPeR `_
- `GRID `_
- `CUHK01 `_
- `PRID450S `_
- `SenseReID `_
- `QMUL-iLIDS `_
- `PRID `_
Video-reid datasets
^^^^^^^^^^^^^^^^^^^^^^^
- `MARS `_
- `iLIDS-VID `_
- `PRID2011 `_
- `DukeMTMC-VideoReID `_
Models
-------
ImageNet classification models
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- `ResNet `_
- `ResNeXt `_
- `SENet `_
- `DenseNet `_
- `Inception-ResNet-V2 `_
- `Inception-V4 `_
- `Xception `_
Lightweight models
^^^^^^^^^^^^^^^^^^^
- `NASNet `_
- `MobileNetV2 `_
- `ShuffleNet `_
- `SqueezeNet `_
ReID-specific models
^^^^^^^^^^^^^^^^^^^^^^
- `MuDeep `_
- `ResNet-mid `_
- `HACNN `_
- `PCB `_
- `MLFN `_
Losses
------
- `Softmax (cross entropy loss with label smoothing) `_
- `Triplet (hard example mining triplet loss) `_
Citation
---------
Please link this project in your paper