from __future__ import division, absolute_import import copy import numpy as np import random from collections import defaultdict from torch.utils.data.sampler import Sampler, RandomSampler, SequentialSampler AVAI_SAMPLERS = ['RandomIdentitySampler', 'SequentialSampler', 'RandomSampler'] class RandomIdentitySampler(Sampler): """Randomly samples N identities each with K instances. Args: data_source (list): contains tuples of (img_path(s), pid, camid). batch_size (int): batch size. num_instances (int): number of instances per identity in a batch. """ def __init__(self, data_source, batch_size, num_instances): if batch_size < num_instances: raise ValueError( 'batch_size={} must be no less ' 'than num_instances={}'.format(batch_size, num_instances) ) self.data_source = data_source self.batch_size = batch_size self.num_instances = num_instances self.num_pids_per_batch = self.batch_size // self.num_instances self.index_dic = defaultdict(list) for index, (_, pid, _) in enumerate(self.data_source): self.index_dic[pid].append(index) self.pids = list(self.index_dic.keys()) # estimate number of examples in an epoch # TODO: improve precision self.length = 0 for pid in self.pids: idxs = self.index_dic[pid] num = len(idxs) if num < self.num_instances: num = self.num_instances self.length += num - num % self.num_instances def __iter__(self): batch_idxs_dict = defaultdict(list) for pid in self.pids: idxs = copy.deepcopy(self.index_dic[pid]) if len(idxs) < self.num_instances: idxs = np.random.choice( idxs, size=self.num_instances, replace=True ) random.shuffle(idxs) batch_idxs = [] for idx in idxs: batch_idxs.append(idx) if len(batch_idxs) == self.num_instances: batch_idxs_dict[pid].append(batch_idxs) batch_idxs = [] avai_pids = copy.deepcopy(self.pids) final_idxs = [] while len(avai_pids) >= self.num_pids_per_batch: selected_pids = random.sample(avai_pids, self.num_pids_per_batch) for pid in selected_pids: batch_idxs = batch_idxs_dict[pid].pop(0) final_idxs.extend(batch_idxs) if len(batch_idxs_dict[pid]) == 0: avai_pids.remove(pid) return iter(final_idxs) def __len__(self): return self.length def build_train_sampler( data_source, train_sampler, batch_size=32, num_instances=4, **kwargs ): """Builds a training sampler. Args: data_source (list): contains tuples of (img_path(s), pid, camid). train_sampler (str): sampler name (default: ``RandomSampler``). batch_size (int, optional): batch size. Default is 32. num_instances (int, optional): number of instances per identity in a batch (when using ``RandomIdentitySampler``). Default is 4. """ assert train_sampler in AVAI_SAMPLERS, \ 'train_sampler must be one of {}, but got {}'.format(AVAI_SAMPLERS, train_sampler) if train_sampler == 'RandomIdentitySampler': sampler = RandomIdentitySampler(data_source, batch_size, num_instances) elif train_sampler == 'SequentialSampler': sampler = SequentialSampler(data_source) elif train_sampler == 'RandomSampler': sampler = RandomSampler(data_source) return sampler