from __future__ import print_function, absolute_import
import numpy as np
import copy

def eval_cuhk03(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50):
    """Evaluation with cuhk03 metric"""
    raise NotImplementedError

def eval_market1501(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50):
    """Evaluation with market1501 metric"""
    num_q, num_g = distmat.shape
    if num_g < max_rank:
        max_rank = num_g
        print("Note: number of gallery samples is quite small, got {}".format(num_g))
    indices = np.argsort(distmat, axis=1)
    matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)

    # compute cmc curve for each query
    all_cmc = []
    all_AP = []
    num_valid_q = 0. # number of valid query
    for q_idx in range(num_q):
        # get query pid and camid
        q_pid = q_pids[q_idx]
        q_camid = q_camids[q_idx]

        # remove gallery samples that have the same pid and camid with query
        order = indices[q_idx]
        remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid)
        keep = np.invert(remove)

        # compute cmc curve
        orig_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches
        if not np.any(orig_cmc):
            # this condition is true when query identity does not appear in gallery
            continue

        cmc = orig_cmc.cumsum()
        cmc[cmc > 1] = 1

        all_cmc.append(cmc[:max_rank])
        num_valid_q += 1.

        # compute average precision
        # reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
        num_rel = orig_cmc.sum()
        tmp_cmc = orig_cmc.cumsum()
        tmp_cmc = [x / (i+1.) for i, x in enumerate(tmp_cmc)]
        tmp_cmc = np.asarray(tmp_cmc) * orig_cmc
        AP = tmp_cmc.sum() / num_rel
        all_AP.append(AP)

    assert num_valid_q > 0, "Error: all query identities do not appear in gallery"

    all_cmc = np.asarray(all_cmc).astype(np.float32)
    all_cmc = all_cmc.sum(0) / num_valid_q
    mAP = np.mean(all_AP)

    return all_cmc, mAP

def evaluate(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50, use_metric_cuhk03=False):
    if use_metric_cuhk03:
        return eval_cuhk03(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)
    else:
        return eval_market1501(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)