# deep-person-reid This repo contains [PyTorch](http://pytorch.org/) implementations of deep person re-identification models. We support - multi-GPU training. - both image-based and video-based reid. - unified interface for different reid models. - end-to-end training and evaluation. - standard splits used by most papers. - download of trained models. ## Updates - May 2018: Support [MSMT17](http://www.pkuvmc.com/publications/msmt17.html) and [DukeMTMC-VideoReID](https://github.com/Yu-Wu/DukeMTMC-VideoReID); Added Inception-v4 and SE-ResNet50. - Apr 2018: Added [DukeMTMC-reID](https://github.com/layumi/DukeMTMC-reID_evaluation#dukemtmc-reid-description); Added [SqueezeNet](https://arxiv.org/abs/1602.07360), [MobileNetV2 (CVPR'18)](https://arxiv.org/abs/1801.04381), [ShuffleNet (CVPR'18)](https://arxiv.org/abs/1707.01083) and [Xception (CVPR'17)](https://arxiv.org/abs/1610.02357). - Apr 2018: Added [Harmonious Attention CNN (CVPR'18)](https://arxiv.org/abs/1802.08122). We achieved Rank-1 42.4% (vs. 41.7% in the paper) on CUHK03 (Detected) by training from scratch. The result can be reproduced by `python train_img_model_xent.py -d cuhk03 -a hacnn --save-dir log/hacnn-xent-cuhk03 --height 160 --width 64 --max-epoch 500 --stepsize -1 --eval-step 50`. - Apr 2018: Code upgraded to pytorch 0.4.0. - Apr 2018: Added [CUHK03](http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html). Models are [available](https://github.com/KaiyangZhou/deep-person-reid#cuhk03-detected-new-protocol-767700). - Apr 2018: Added [iLIDS-VID](http://www.eecs.qmul.ac.uk/~xiatian/downloads_qmul_iLIDS-VID_ReID_dataset.html) and [PRID-2011](https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/PRID11/). Models are [available](https://github.com/KaiyangZhou/deep-person-reid#video-person-reid). - Mar 2018: Added argument `--htri-only` to `train_img_model_xent_htri.py` and `train_vid_model_xent_htri.py`. If this argument is true, only `htri` [4] is used for training. See [here](https://github.com/KaiyangZhou/deep-person-reid/blob/master/train_img_model_xent_htri.py#L189) for detailed changes. - Mar 2018: Added [Multi-scale Deep CNN (ICCV'17)](https://arxiv.org/abs/1709.05165) [10] with slight modifications: (a) Input size is (256, 128) instead of (160, 60); (b) We add an average pooling layer after the last conv feature maps. (c) We train the network with our strategy. Model trained from scratch on Market1501 is [available](https://github.com/KaiyangZhou/deep-person-reid#results). - Mar 2018: Added [center loss (ECCV'16)](https://github.com/KaiyangZhou/pytorch-center-loss) [9] and the trained model weights. ## Dependencies - [PyTorch](http://pytorch.org/) (0.4.0) - [torchvision](https://github.com/pytorch/vision/) Python2 is recommended for current version. ## Install 1. `cd` to the folder where you want to download this repo. 2. run `git clone https://github.com/KaiyangZhou/deep-person-reid`. ## Prepare data Create a directory to store reid datasets under this repo via ```bash cd deep-person-reid/ mkdir data/ ``` If you wanna store datasets in another directory, you need to specify `--root path_to_your/data` when running the training code. Please follow the instructions below to prepare each dataset. After that, you can simply do `-d the_dataset` when running the training code. Please do not call image dataset when running video reid scripts, otherwise error would occur, and vice versa. **Market1501** [7]: 1. Download dataset to `data/` from http://www.liangzheng.org/Project/project_reid.html. 2. Extract dataset and rename to `market1501`. The data structure would look like: ``` market1501/ bounding_box_test/ bounding_box_train/ ... ``` 3. Use `-d market1501` when running the training code. **CUHK03** [13]: 1. Create a folder named `cuhk03/` under `data/`. 2. Download dataset to `data/cuhk03/` from http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html and extract `cuhk03_release.zip`, so you will have `data/cuhk03/cuhk03_release`. 3. Download new split [14] from [person-re-ranking](https://github.com/zhunzhong07/person-re-ranking/tree/master/evaluation/data/CUHK03). What you need are `cuhk03_new_protocol_config_detected.mat` and `cuhk03_new_protocol_config_labeled.mat`. Put these two mat files under `data/cuhk03`. Finally, the data structure would look like ``` cuhk03/ cuhk03_release/ cuhk03_new_protocol_config_detected.mat cuhk03_new_protocol_config_labeled.mat ... ``` 4. Use `-d cuhk03` when running the training code. In default mode, we use new split (767/700). If you wanna use the original splits (1367/100) created by [13], specify `--cuhk03-classic-split`. As [13] computes CMC differently from Market1501, you might need to specify `--use-metric-cuhk03` for fair comparison with their method. In addition, we support both `labeled` and `detected` modes. The default mode loads `detected` images. Specify `--cuhk03-labeled` if you wanna train and test on `labeled` images. **DukeMTMC-reID** [16, 17]: 1. Create a directory under `data/` called `dukemtmc-reid`. 2. Download dataset `DukeMTMC-reID.zip` from https://github.com/layumi/DukeMTMC-reID_evaluation#download-dataset and put it to `data/dukemtmc-reid`. Extract the zip file, which leads to ``` dukemtmc-reid/ DukeMTMC-reid.zip # (you can delete this zip file, it is ok) DukeMTMC-reid/ # this folder contains 8 files. ``` 3. Use `-d dukemtmcreid` when running the training code. **MSMT17** [22]: 1. Create a directory named `msmt17/` under `data/`. 2. Download dataset `MSMT17_V1.tar.gz` to `data/msmt17/` from http://www.pkuvmc.com/publications/msmt17.html. Extract the file under the same folder, so you will have ``` msmt17/ MSMT17_V1.tar.gz # (do whatever you want with this .tar file) MSMT17_V1/ train/ test/ list_train.txt ... (totally six .txt files) ``` 3. Use `-d msmt17` when running the training code. **MARS** [8]: 1. Create a directory named `mars/` under `data/`. 2. Download dataset to `data/mars/` from http://www.liangzheng.com.cn/Project/project_mars.html. 3. Extract `bbox_train.zip` and `bbox_test.zip`. 4. Download split information from https://github.com/liangzheng06/MARS-evaluation/tree/master/info and put `info/` in `data/mars` (we want to follow the standard split in [8]). The data structure would look like: ``` mars/ bbox_test/ bbox_train/ info/ ``` 5. Use `-d mars` when running the training code. **iLIDS-VID** [11]: 1. The code supports automatic download and formatting. Simple use `-d ilidsvid` when running the training code. The data structure would look like: ``` ilids-vid/ i-LIDS-VID/ train-test people splits/ splits.json ``` **PRID** [12]: 1. Under `data/`, do `mkdir prid2011` to create a directory. 2. Download dataset from https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/PRID11/ and extract it under `data/prid2011`. 3. Download the split created by [iLIDS-VID](http://www.eecs.qmul.ac.uk/~xiatian/downloads_qmul_iLIDS-VID_ReID_dataset.html) from [here](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/datasets/prid2011/splits_prid2011.json), and put it in `data/prid2011/`. We follow [11] and use 178 persons whose sequences are more than a threshold so that results on this dataset can be fairly compared with other approaches. The data structure would look like: ``` prid2011/ splits_prid2011.json prid_2011/ multi_shot/ single_shot/ readme.txt ``` 4. Use `-d prid` when running the training code. **DukeMTMC-VideoReID** [16, 23]: 1. Make a directory `data/dukemtmc-vidreid`. 2. Download `dukemtmc_videoReID.zip` from https://github.com/Yu-Wu/DukeMTMC-VideoReID. Unzip the file to `data/dukemtmc-vidreid`. You need to have ``` dukemtmc-vidreid/ dukemtmc_videoReID/ train_split/ query_split/ gallery_split/ ... (and two license files) ``` 3. Use `-d dukemtmcvidreid` when running the training code. ## Dataset loaders These are implemented in `dataset_loader.py` where we have two main classes that subclass [torch.utils.data.Dataset](http://pytorch.org/docs/master/_modules/torch/utils/data/dataset.html#Dataset): * [ImageDataset](https://github.com/KaiyangZhou/deep-person-reid/blob/master/dataset_loader.py#L22): processes image-based person reid datasets. * [VideoDataset](https://github.com/KaiyangZhou/deep-person-reid/blob/master/dataset_loader.py#L38): processes video-based person reid datasets. These two classes are used for [torch.utils.data.DataLoader](http://pytorch.org/docs/master/_modules/torch/utils/data/dataloader.html#DataLoader) that can provide batched data. Data loader wich `ImageDataset` outputs batch data of `(batch, channel, height, width)`, while data loader with `VideoDataset` outputs batch data of `(batch, sequence, channel, height, width)`. ## Models * `models/ResNet.py`: ResNet50 [1], ResNet50M [2]. * `models/DenseNet.py`: DenseNet121 [3]. * `models/MuDeep.py`: MuDeep [10]. * `models/HACNN.py`: HACNN [15]. * `models/SqueezeNet.py`: SqueezeNet [18]. * `models/MobileNet.py`: MobileNetV2 [19]. * `models/ShuffleNet.py`: ShuffleNet [20]. * `models/Xception.py`: Xception [21]. * `models/Inception.py`: InceptionV4ReID [24]. * `models/SEResNet.py`: SEResNet50[25]. See `models/__init__.py` for details regarding what keys to use to call these models. ## Loss functions * `xent`: cross entropy + label smoothing regularizer [5]. * `htri`: triplet loss with hard positive/negative mining [4] . * `cent`: center loss [9]. Optimizers are wrapped in `optimizers.py`, which supports `adam` (default) and `sgd`. Use `--optim string_name` to manage the optimizer. ## Train Training codes are implemented mainly in * `train_img_model_xent.py`: train image model with cross entropy loss. * `train_img_model_xent_htri.py`: train image model with combination of cross entropy loss and hard triplet loss. * `train_img_model_cent.py`: train image model with center loss. * `train_vid_model_xent.py`: train video model with cross entropy loss. * `train_vid_model_xent_htri.py`: train video model with combination of cross entropy loss and hard triplet loss. For example, to train an image reid model using ResNet50 and cross entropy loss, run ```bash python train_img_model_xent.py -d market1501 -a resnet50 --max-epoch 60 --train-batch 32 --test-batch 32 --stepsize 20 --eval-step 20 --save-dir log/resnet50-xent-market1501 --gpu-devices 0 ``` To use multiple GPUs, you can set `--gpu-devices 0,1,2,3`. Please run `python train_blah_blah.py -h` for more details regarding arguments. ## Results :dog: means that model is initialized with imagenet pretrained weights. ### Image person reid #### Market1501 | Model | Param Size (M) | Loss | Rank-1/5/10 (%) | mAP (%) | Model weights | Published Rank | Published mAP | | --- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | DenseNet121:dog: | 7.72 | xent | 86.5/93.6/95.7 | 67.8 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/densenet121_xent_market1501.pth.tar) | | | | DenseNet121:dog: | 7.72 | xent+htri | 89.5/96.3/97.5 | 72.6 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/densenet121_xent_htri_market1501.pth.tar) | | | | Resnet50:dog: | 25.05 | cent | 85.1/93.8/96.2 | 69.1 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/resnet50_cent_market1501.pth.tar) | | | | ResNet50:dog: | 25.05 | xent | 85.4/94.1/95.9 | 68.8 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/resnet50_xent_market1501.pth.tar) | | | | ResNet50:dog: | 25.05 | xent+htri | 87.5/95.3/97.3 | 72.3 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/resnet50_xent_htri_market1501.pth.tar) | | | | ResNet50M:dog: | 30.01 | xent | 89.4/95.9/97.4 | 75.0 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/resnet50m_xent_market1501.pth.tar) | 89.9/-/- | 75.6 | | ResNet50M:dog: | 30.01 | xent+htri | 90.7/97.0/98.2 | 76.8 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/resnet50m_xent_htri_market1501.pth.tar) | | | | MuDeep | 138.02 | xent+htri| 71.5/89.3/96.3 | 47.0 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/mudeep_xent_htri_market1501.pth.tar) | | | | SqueezeNet | 1.13 | xent | 65.1/82.3/87.9 | 41.6 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/squeezenet_xent_market1501.pth.tar) | | | | MobileNetV2 | 3.19 | xent | 77.0/89.5/92.8 | 56.3 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/mobilenet_xent_market1501.pth.tar) | | | | ShuffleNet | 1.63 | xent | 68.7/85.7/90.2 | 44.9 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/shufflenet_xent_market1501.pth.tar) | | | | Xception | 22.39 | xent | 72.1/88.2/92.1 | 52.8 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/xception_xent_market1501.pth.tar) | | | | HACNN | 3.70 | xent | 88.7/95.3/97.4 | 71.2 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/hacnn_xent_market1501.pth.tar) | 91.2/-/- | 75.7 | #### CUHK03 (detected, [new protocol (767/700)](https://github.com/zhunzhong07/person-re-ranking#the-new-trainingtesting-protocol-for-cuhk03)) | Model | Param Size (M) | Loss | Rank-1/5/10 (%) | mAP (%) | Model weights | Published Rank | Published mAP | | --- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | DenseNet121:dog: | 7.74 | xent | 41.0/61.7/71.5 | 40.6 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/densenet121_xent_cuhk03.pth.tar) | | | | ResNet50:dog: | 25.08 | xent | 48.8/69.4/78.4 | 47.5 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/resnet50_xent_cuhk03.pth.tar) | | | | ResNet50M:dog: | 30.06 | xent | 57.5/75.4/82.5 | 55.2 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/resnet50m_xent_cuhk03.pth.tar) | 47.1/-/- | 43.5 | | HACNN | 3.72 | xent | 42.4/60.9/70.5 | 40.9 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/hacnn_xent_cuhk03.pth.tar) | 41.7/-/- |38.6 | | SqueezeNet | 1.13 | xent | 20.0/38.4/48.2 | 20.0 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/squeezenet_xent_cuhk03.pth.tar) | | | | MobileNetV2 | 3.21 | xent | 35.1/55.8/64.7 | 33.8 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/mobilenet_xent_cuhk03.pth.tar) | | | | ShuffleNet | 1.64 | xent | 22.0/39.3/49.9 | 21.2 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/shufflenet_xent_cuhk03.pth.tar) | | | #### DukeMTMC-reID | Model | Param Size (M) | Loss | Rank-1/5/10 (%) | mAP (%) | Model weights | Published Rank | Published mAP | | --- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | DenseNet121:dog: | 7.67 | xent | 74.9/86.0/88.8 | 54.5 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/densenet121_xent_dukemtmcreid.pth.tar) | | | | ResNet50:dog: | 24.94 | xent | 76.3/87.1/90.9 | 59.5 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/resnet50_xent_dukemtmcreid.pth.tar) | | | | ResNet50M:dog: | 29.86 | xent | 80.5/89.8/92.4 | 63.3 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/resnet50m_xent_dukemtmcreid.pth.tar) | 80.4/-/- | 63.9 | | SqueezeNet | 1.10 | xent | 50.2/68.9/75.3 | 30.3 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/squeezenet_xent_dukemtmcreid.pth.tar) | | | | MobileNetV2 | 3.12 | xent | 65.6/79.2/83.7 | 43.6 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/mobilenet_xent_dukemtmcreid.pth.tar) | | | | ShuffleNet | 1.58 | xent | 56.9/74.680.5 | 37.8 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/shufflenet_xent_dukemtmcreid.pth.tar) | | | | HACNN | 3.65 | xent | 78.5/88.8/91.3 | 60.8 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/image-models/hacnn_xent_dukemtmcreid.pth.tar) | 80.5/-/- | 63.8 | ### Video person reid #### MARS | Model | Param Size (M) | Loss | Rank-1/5/10 (%) | mAP (%) | Model weights | Published Rank | Published mAP | | --- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | DenseNet121:dog: | 7.59 | xent | 65.2/81.1/86.3 | 52.1 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/video-models/densenet121_xent_mars.pth.tar) | | | | DenseNet121:dog: | 7.59 | xent+htri | 82.6/93.2/95.4 | 74.6 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/video-models/densenet121_xent_htri_mars.pth.tar) | | | | ResNet50:dog: | 24.79 | xent | 74.5/88.8/91.8 | 64.0 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/video-models/resnet50_xent_mars.pth.tar) | | | | ResNet50:dog: | 24.79 | xent+htri | 80.8/92.1/94.3 | 74.0 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/video-models/resnet50_xent_htri_mars.pth.tar) | | | | ResNet50M:dog: | 29.63 | xent | 77.8/89.8/92.8 | 67.5 | - | | | | ResNet50M:dog: | 29.63 | xent+htri | 82.3/93.8/95.3 | 75.4 | - | | | #### iLIDS-VID | Model | Param Size (M) | Loss | Rank-1/5/10 (%) | mAP (%) | Model weights | Published Rank | Published mAP | | --- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | ResNet50:dog: | 23.82 | xent | 62.7/82.7/90.7 | 72.6 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/video-models/resnet50_xent_ilidsvid.pth.tar) | | | | ResNet50M:dog: | 28.17 | xent | 63.3/85.3/92.7 | 73.6 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/video-models/resnet50m_xent_ilidsvid.pth.tar) | | | #### PRID-2011 | Model | Param Size (M) | Loss | Rank-1/5/10 (%) | mAP (%) | Model weights | Published Rank | Published mAP | | --- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | ResNet50:dog: | 23.69 | xent | 75.3/96.6/97.8 | 84.3 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/video-models/resnet50_xent_prid.pth.tar) | | | | ResNet50M:dog: | 27.98 | xent | 85.4/96.6/98.9 | 90.1 | [download](http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/video-models/resnet50m_xent_prid.pth.tar) | | | ## Test Say you have downloaded ResNet50 trained with `xent` on `market1501`. The path to this model is `'saved-models/resnet50_xent_market1501.pth.tar'` (create a directory to store model weights `mkdir saved-models/`). Then, run the following command to test ```bash python train_img_model_xent.py -d market1501 -a resnet50 --evaluate --resume saved-models/resnet50_xent_market1501.pth.tar --save-dir log/resnet50-xent-market1501 --test-batch 32 ``` Likewise, to test video reid model, you should have a pretrained model saved under `saved-models/`, e.g. `saved-models/resnet50_xent_mars.pth.tar`, then run ```bash python train_vid_model_xent.py -d mars -a resnet50 --evaluate --resume saved-models/resnet50_xent_mars.pth.tar --save-dir log/resnet50-xent-mars --test-batch 2 ``` **Note** that `--test-batch` in video reid represents number of tracklets. If we set this argument to 2, and sample 15 images per tracklet, the resulting number of images per batch is 2*15=30. Adjust this argument according to your GPU memory. ## Q&A 1. **How do I set different learning rates to different components in my model?** A: Instead of giving `model.parameters()` to optimizer, you could pass an iterable of `dict`s, as described [here](http://pytorch.org/docs/master/optim.html#per-parameter-options). Please see the example below ```python # First comment the following code. #optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) param_groups = [ {'params': model.base.parameters(), 'lr': 0}, {'params': model.classifier.parameters()}, ] # Such that model.base will be frozen and model.classifier will be trained with # the default leanring rate, i.e. args.lr. This example code only applies to model # that has two components (base and classifier). Modify the code to adapt to your model. optimizer = torch.optim.Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay) ``` Of course, you can pass `model.classifier.parameters()` to optimizer if you only need to train the classifier (in this case, setting the `requires_grad`s wrt the base model params to false will be more efficient). ## References [1] [He et al. Deep Residual Learning for Image Recognition. CVPR 2016.](https://arxiv.org/abs/1512.03385)
[2] [Yu et al. The Devil is in the Middle: Exploiting Mid-level Representations for Cross-Domain Instance Matching. arXiv:1711.08106.](https://arxiv.org/abs/1711.08106)
[3] [Huang et al. Densely Connected Convolutional Networks. CVPR 2017.](https://arxiv.org/abs/1608.06993)
[4] [Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.](https://arxiv.org/abs/1703.07737)
[5] [Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.](https://arxiv.org/abs/1512.00567)
[6] [Kingma and Ba. Adam: A Method for Stochastic Optimization. ICLR 2015.](https://arxiv.org/abs/1412.6980)
[7] [Zheng et al. Scalable Person Re-identification: A Benchmark. ICCV 2015.](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf)
[8] [Zheng et al. MARS: A Video Benchmark for Large-Scale Person Re-identification. ECCV 2016.](http://www.liangzheng.com.cn/Project/project_mars.html)
[9] [Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016](https://ydwen.github.io/papers/WenECCV16.pdf)
[10] [Qian et al. Multi-scale Deep Learning Architectures for Person Re-identification. ICCV 2017.](https://arxiv.org/abs/1709.05165)
[11] [Wang et al. Person Re-Identification by Video Ranking. ECCV 2014.](http://www.eecs.qmul.ac.uk/~xiatian/papers/ECCV14/WangEtAl_ECCV14.pdf)
[12] [Hirzer et al. Person Re-Identification by Descriptive and Discriminative Classification. SCIA 2011.](https://files.icg.tugraz.at/seafhttp/files/ba284964-6e03-4261-bb39-e85280707598/hirzer_scia_2011.pdf)
[13] [Li et al. DeepReID: Deep Filter Pairing Neural Network for Person Re-identification. CVPR 2014.](https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf)
[14] [Zhong et al. Re-ranking Person Re-identification with k-reciprocal Encoding. CVPR 2017](https://arxiv.org/abs/1701.08398)
[15] [Li et al. Harmonious Attention Network for Person Re-identification. CVPR 2018.](https://arxiv.org/abs/1802.08122)
[16] [Ristani et al. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. ECCVW 2016.](https://arxiv.org/abs/1609.01775)
[17] [Zheng et al. Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro. ICCV 2017.](https://arxiv.org/abs/1701.07717)
[18] [Iandola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv:1602.07360.](https://arxiv.org/abs/1602.07360)
[19] [Sandler et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks. CVPR 2018.](https://arxiv.org/abs/1801.04381)
[20] [Zhang et al. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. CVPR 2018.](https://arxiv.org/abs/1707.01083)
[21] [Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. CVPR 2017.](https://arxiv.org/abs/1610.02357)
[22] [Wei et al. Person Transfer GAN to Bridge Domain Gap for Person Re-Identification. CVPR 2018.](http://www.pkuvmc.com/publications/msmt17.html)
[23] [Wu et al. Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning. CVPR 2018.](http://xuanyidong.com/publication/cvpr-2018-eug/)
[24] [Szegedy et al. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. ICLRW 2016.](https://arxiv.org/abs/1602.07261)
[25] [Hu et al. Squeeze-and-Excitation Networks. CVPR 2018.](https://arxiv.org/abs/1709.01507)