from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from PIL import Image
import random
import numpy as np
import math
import torch
from torchvision.transforms import *
[docs]class Random2DTranslation(object):
"""Randomly translates the input image with a probability.
Specifically, given a predefined shape (height, width), the input is first
resized with a factor of 1.125, leading to (height*1.125, width*1.125), then
a random crop is performed. Such operation is done with a probability.
Args:
height (int): target image height.
width (int): target image width.
p (float, optional): probability that this operation takes place.
Default is 0.5.
interpolation (int, optional): desired interpolation. Default is
``PIL.Image.BILINEAR``
"""
def __init__(self, height, width, p=0.5, interpolation=Image.BILINEAR):
self.height = height
self.width = width
self.p = p
self.interpolation = interpolation
def __call__(self, img):
if random.uniform(0, 1) > self.p:
return img.resize((self.width, self.height), self.interpolation)
new_width, new_height = int(round(self.width * 1.125)), int(round(self.height * 1.125))
resized_img = img.resize((new_width, new_height), self.interpolation)
x_maxrange = new_width - self.width
y_maxrange = new_height - self.height
x1 = int(round(random.uniform(0, x_maxrange)))
y1 = int(round(random.uniform(0, y_maxrange)))
croped_img = resized_img.crop((x1, y1, x1 + self.width, y1 + self.height))
return croped_img
[docs]class RandomErasing(object):
"""Randomly erases an image patch.
Origin: `<https://github.com/zhunzhong07/Random-Erasing>`_
Reference:
Zhong et al. Random Erasing Data Augmentation.
Args:
probability (float, optional): probability that this operation takes place.
Default is 0.5.
sl (float, optional): min erasing area.
sh (float, optional): max erasing area.
r1 (float, optional): min aspect ratio.
mean (list, optional): erasing value.
"""
def __init__(self, probability=0.5, sl=0.02, sh=0.4, r1=0.3, mean=[0.4914, 0.4822, 0.4465]):
self.probability = probability
self.mean = mean
self.sl = sl
self.sh = sh
self.r1 = r1
def __call__(self, img):
if random.uniform(0, 1) > self.probability:
return img
for attempt in range(100):
area = img.size()[1] * img.size()[2]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1/self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < img.size()[2] and h < img.size()[1]:
x1 = random.randint(0, img.size()[1] - h)
y1 = random.randint(0, img.size()[2] - w)
if img.size()[0] == 3:
img[0, x1:x1+h, y1:y1+w] = self.mean[0]
img[1, x1:x1+h, y1:y1+w] = self.mean[1]
img[2, x1:x1+h, y1:y1+w] = self.mean[2]
else:
img[0, x1:x1+h, y1:y1+w] = self.mean[0]
return img
return img
[docs]class ColorAugmentation(object):
"""Randomly alters the intensities of RGB channels.
Reference:
Krizhevsky et al. ImageNet Classification with Deep ConvolutionalNeural
Networks. NIPS 2012.
Args:
p (float, optional): probability that this operation takes place.
Default is 0.5.
"""
def __init__(self, p=0.5):
self.p = p
self.eig_vec = torch.Tensor([
[0.4009, 0.7192, -0.5675],
[-0.8140, -0.0045, -0.5808],
[0.4203, -0.6948, -0.5836],
])
self.eig_val = torch.Tensor([[0.2175, 0.0188, 0.0045]])
def _check_input(self, tensor):
assert tensor.dim() == 3 and tensor.size(0) == 3
def __call__(self, tensor):
if random.uniform(0, 1) > self.p:
return tensor
alpha = torch.normal(mean=torch.zeros_like(self.eig_val)) * 0.1
quatity = torch.mm(self.eig_val * alpha, self.eig_vec)
tensor = tensor + quatity.view(3, 1, 1)
return tensor