import argparse def argument_parser(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) # ************************************************************ # Datasets (general) # ************************************************************ parser.add_argument('--root', type=str, default='data', help='root path to data directory') parser.add_argument('-s', '--source-names', type=str, required=True, nargs='+', help='source datasets (delimited by space)') parser.add_argument('-t', '--target-names', type=str, required=True, nargs='+', help='target datasets (delimited by space)') parser.add_argument('-j', '--workers', default=4, type=int, help='number of data loading workers (tips: 4 or 8 times number of gpus)') parser.add_argument('--split-id', type=int, default=0, help='split index (note: 0-based)') parser.add_argument('--height', type=int, default=256, help='height of an image') parser.add_argument('--width', type=int, default=128, help='width of an image') parser.add_argument('--train-sampler', type=str, default='RandomSampler', help='sampler for trainloader') # ************************************************************ # Data augmentation # ************************************************************ parser.add_argument('--random-erase', action='store_true', help='use random erasing for data augmentation') parser.add_argument('--color-jitter', action='store_true', help='randomly change the brightness, contrast and saturation') parser.add_argument('--color-aug', action='store_true', help='randomly alter the intensities of RGB channels') # ************************************************************ # Video datasets # ************************************************************ parser.add_argument('--seq-len', type=int, default=15, help='number of images to sample in a tracklet') parser.add_argument('--sample-method', type=str, default='evenly', help='how to sample images from a tracklet') parser.add_argument('--pool-tracklet-features', type=str, default='avg', choices=['avg', 'max'], help='how to pool features over a tracklet (for video reid)') # ************************************************************ # Dataset-specific setting # ************************************************************ parser.add_argument('--cuhk03-labeled', action='store_true', help='use labeled images, if false, use detected images') parser.add_argument('--cuhk03-classic-split', action='store_true', help='use classic split by Li et al. CVPR\'14') parser.add_argument('--use-metric-cuhk03', action='store_true', help='use cuhk03\'s metric for evaluation') parser.add_argument('--market1501-500k', action='store_true', help='add 500k distractors to the gallery set for market1501') # ************************************************************ # Optimization options # ************************************************************ parser.add_argument('--optim', type=str, default='adam', help='optimization algorithm (see optimizers.py)') parser.add_argument('--lr', default=0.0003, type=float, help='initial learning rate') parser.add_argument('--weight-decay', default=5e-04, type=float, help='weight decay') # sgd parser.add_argument('--momentum', default=0.9, type=float, help='momentum factor for sgd and rmsprop') parser.add_argument('--sgd-dampening', default=0, type=float, help='sgd\'s dampening for momentum') parser.add_argument('--sgd-nesterov', action='store_true', help='whether to enable sgd\'s Nesterov momentum') # rmsprop parser.add_argument('--rmsprop-alpha', default=0.99, type=float, help='rmsprop\'s smoothing constant') # adam/amsgrad parser.add_argument('--adam-beta1', default=0.9, type=float, help='exponential decay rate for adam\'s first moment') parser.add_argument('--adam-beta2', default=0.999, type=float, help='exponential decay rate for adam\'s second moment') # ************************************************************ # Training hyperparameters # ************************************************************ parser.add_argument('--max-epoch', default=60, type=int, help='maximum epochs to run') parser.add_argument('--start-epoch', default=0, type=int, help='manual epoch number (useful when restart)') parser.add_argument('--train-batch-size', default=32, type=int, help='training batch size') parser.add_argument('--test-batch-size', default=100, type=int, help='test batch size') parser.add_argument('--always-fixbase', action='store_true', help='always fix base network and only train specified layers') parser.add_argument('--fixbase-epoch', type=int, default=0, help='how many epochs to fix base network (only train randomly initialized classifier)') parser.add_argument('--open-layers', type=str, nargs='+', default=['classifier'], help='open specified layers for training while keeping others frozen') parser.add_argument('--staged-lr', action='store_true', help='set different lr to different layers') parser.add_argument('--new-layers', type=str, nargs='+', default=['classifier'], help='newly added layers with default lr') parser.add_argument('--base-lr-mult', type=float, default=0.1, help='learning rate multiplier for base layers') # ************************************************************ # Learning rate scheduler options # ************************************************************ parser.add_argument('--lr-scheduler', type=str, default='multi_step', help='learning rate scheduler (see lr_schedulers.py)') parser.add_argument('--stepsize', default=[20, 40], nargs='+', type=int, help='stepsize to decay learning rate') parser.add_argument('--gamma', default=0.1, type=float, help='learning rate decay') # ************************************************************ # Cross entropy loss-specific setting # ************************************************************ parser.add_argument('--label-smooth', action='store_true', help='use label smoothing regularizer in cross entropy loss') # ************************************************************ # Hard triplet loss-specific setting # ************************************************************ parser.add_argument('--margin', type=float, default=0.3, help='margin for triplet loss') parser.add_argument('--num-instances', type=int, default=4, help='number of instances per identity') parser.add_argument('--lambda-xent', type=float, default=1, help='weight to balance cross entropy loss') parser.add_argument('--lambda-htri', type=float, default=1, help='weight to balance hard triplet loss') # ************************************************************ # Architecture # ************************************************************ parser.add_argument('-a', '--arch', type=str, default='resnet50') parser.add_argument('--no-pretrained', action='store_true', help='do not load pretrained weights') # ************************************************************ # Test settings # ************************************************************ parser.add_argument('--load-weights', type=str, default='', help='load pretrained weights but ignore layers that don\'t match in size') parser.add_argument('--evaluate', action='store_true', help='evaluate only') parser.add_argument('--eval-freq', type=int, default=-1, help='evaluation frequency (set to -1 to test only in the end)') parser.add_argument('--start-eval', type=int, default=0, help='start to evaluate after a specific epoch') # ************************************************************ # Miscs # ************************************************************ parser.add_argument('--print-freq', type=int, default=10, help='print frequency') parser.add_argument('--seed', type=int, default=1, help='manual seed') parser.add_argument('--resume', type=str, default='', metavar='PATH', help='resume from a checkpoint') parser.add_argument('--save-dir', type=str, default='log', help='path to save log and model weights') parser.add_argument('--use-cpu', action='store_true', help='use cpu') parser.add_argument('--gpu-devices', default='0', type=str, help='gpu device ids for CUDA_VISIBLE_DEVICES') parser.add_argument('--use-avai-gpus', action='store_true', help='use available gpus instead of specified devices (useful when using managed clusters)') parser.add_argument('--visualize-ranks', action='store_true', help='visualize ranked results, only available in evaluation mode') return parser def image_dataset_kwargs(parsed_args): """ Build kwargs for ImageDataManager in data_manager.py from the parsed command-line arguments. """ return { 'source_names': parsed_args.source_names, 'target_names': parsed_args.target_names, 'root': parsed_args.root, 'split_id': parsed_args.split_id, 'height': parsed_args.height, 'width': parsed_args.width, 'train_batch_size': parsed_args.train_batch_size, 'test_batch_size': parsed_args.test_batch_size, 'workers': parsed_args.workers, 'train_sampler': parsed_args.train_sampler, 'num_instances': parsed_args.num_instances, 'cuhk03_labeled': parsed_args.cuhk03_labeled, 'cuhk03_classic_split': parsed_args.cuhk03_classic_split, 'market1501_500k': parsed_args.market1501_500k, 'random_erase': parsed_args.random_erase, 'color_jitter': parsed_args.color_jitter, 'color_aug': parsed_args.color_aug, } def video_dataset_kwargs(parsed_args): """ Build kwargs for VideoDataManager in data_manager.py from the parsed command-line arguments. """ return { 'source_names': parsed_args.source_names, 'target_names': parsed_args.target_names, 'root': parsed_args.root, 'split_id': parsed_args.split_id, 'height': parsed_args.height, 'width': parsed_args.width, 'train_batch_size': parsed_args.train_batch_size, 'test_batch_size': parsed_args.test_batch_size, 'workers': parsed_args.workers, 'train_sampler': parsed_args.train_sampler, 'num_instances': parsed_args.num_instances, 'seq_len': parsed_args.seq_len, 'sample_method': parsed_args.sample_method, 'random_erase': parsed_args.random_erase, 'color_jitter': parsed_args.color_jitter, 'color_aug': parsed_args.color_aug, } def optimizer_kwargs(parsed_args): """ Build kwargs for optimizer in optimizers.py from the parsed command-line arguments. """ return { 'optim': parsed_args.optim, 'lr': parsed_args.lr, 'weight_decay': parsed_args.weight_decay, 'momentum': parsed_args.momentum, 'sgd_dampening': parsed_args.sgd_dampening, 'sgd_nesterov': parsed_args.sgd_nesterov, 'rmsprop_alpha': parsed_args.rmsprop_alpha, 'adam_beta1': parsed_args.adam_beta1, 'adam_beta2': parsed_args.adam_beta2, 'staged_lr': parsed_args.staged_lr, 'new_layers': parsed_args.new_layers, 'base_lr_mult': parsed_args.base_lr_mult, } def lr_scheduler_kwargs(parsed_args): """ Build kwargs for lr_scheduler in lr_schedulers.py from the parsed command-line arguments. """ return { 'lr_scheduler': parsed_args.lr_scheduler, 'stepsize': parsed_args.stepsize, 'gamma': parsed_args.gamma, }