from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import re import sys import urllib import tarfile import zipfile import os.path as osp from scipy.io import loadmat import numpy as np import h5py from scipy.misc import imsave class Market1501(object): """ Market1501 Reference: Zheng et al. Scalable Person Re-identification: A Benchmark. ICCV 2015. URL: http://www.liangzheng.org/Project/project_reid.html Dataset statistics: # identities: 1501 (+1 for background) # images: 12936 (train) + 3368 (query) + 15913 (gallery) """ dataset_dir = 'market1501' def __init__(self, root='data', verbose=True, **kwargs): super(Market1501, self).__init__() self.dataset_dir = osp.join(root, self.dataset_dir) self.train_dir = osp.join(self.dataset_dir, 'bounding_box_train') self.query_dir = osp.join(self.dataset_dir, 'query') self.gallery_dir = osp.join(self.dataset_dir, 'bounding_box_test') self._check_before_run() train, num_train_pids, num_train_imgs = self._process_dir(self.train_dir, relabel=True) query, num_query_pids, num_query_imgs = self._process_dir(self.query_dir, relabel=False) gallery, num_gallery_pids, num_gallery_imgs = self._process_dir(self.gallery_dir, relabel=False) num_total_pids = num_train_pids + num_query_pids num_total_imgs = num_train_imgs + num_query_imgs + num_gallery_imgs if verbose: print("=> Market1501 loaded") print("Dataset statistics:") print(" ------------------------------") print(" subset | # ids | # images") print(" ------------------------------") print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_imgs)) print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_imgs)) print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs)) print(" ------------------------------") print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_imgs)) print(" ------------------------------") self.train = train self.query = query self.gallery = gallery self.num_train_pids = num_train_pids self.num_query_pids = num_query_pids self.num_gallery_pids = num_gallery_pids def _check_before_run(self): """Check if all files are available before going deeper""" if not osp.exists(self.dataset_dir): raise RuntimeError("'{}' is not available".format(self.dataset_dir)) if not osp.exists(self.train_dir): raise RuntimeError("'{}' is not available".format(self.train_dir)) if not osp.exists(self.query_dir): raise RuntimeError("'{}' is not available".format(self.query_dir)) if not osp.exists(self.gallery_dir): raise RuntimeError("'{}' is not available".format(self.gallery_dir)) def _process_dir(self, dir_path, relabel=False): img_paths = glob.glob(osp.join(dir_path, '*.jpg')) pattern = re.compile(r'([-\d]+)_c(\d)') pid_container = set() for img_path in img_paths: pid, _ = map(int, pattern.search(img_path).groups()) if pid == -1: continue # junk images are just ignored pid_container.add(pid) pid2label = {pid:label for label, pid in enumerate(pid_container)} dataset = [] for img_path in img_paths: pid, camid = map(int, pattern.search(img_path).groups()) if pid == -1: continue # junk images are just ignored assert 0 <= pid <= 1501 # pid == 0 means background assert 1 <= camid <= 6 camid -= 1 # index starts from 0 if relabel: pid = pid2label[pid] dataset.append((img_path, pid, camid)) num_pids = len(pid_container) num_imgs = len(dataset) return dataset, num_pids, num_imgs