from __future__ import print_function from __future__ import division import os import sys import time import datetime import argparse import os.path as osp import numpy as np import torch import torch.nn as nn import torch.backends.cudnn as cudnn from torch.utils.data import DataLoader from torch.optim import lr_scheduler import data_manager from dataset_loader import ImageDataset, VideoDataset import transforms as T import models from losses import CrossEntropyLabelSmooth, TripletLoss from utils.iotools import save_checkpoint, check_isfile from utils.avgmeter import AverageMeter from utils.logger import Logger from utils.torchtools import count_num_param from utils.reidtools import visualize_ranked_results from eval_metrics import evaluate from samplers import RandomIdentitySampler from optimizers import init_optim parser = argparse.ArgumentParser(description='Train video model with cross entropy loss') # Datasets parser.add_argument('--root', type=str, default='data', help="root path to data directory") parser.add_argument('-d', '--dataset', type=str, default='mars', choices=data_manager.get_names()) parser.add_argument('-j', '--workers', default=4, type=int, help="number of data loading workers (default: 4)") parser.add_argument('--height', type=int, default=256, help="height of an image (default: 256)") parser.add_argument('--width', type=int, default=128, help="width of an image (default: 128)") parser.add_argument('--seq-len', type=int, default=15, help="number of images to sample in a tracklet") # Optimization options parser.add_argument('--optim', type=str, default='adam', help="optimization algorithm (see optimizers.py)") parser.add_argument('--max-epoch', default=500, type=int, help="maximum epochs to run") parser.add_argument('--start-epoch', default=0, type=int, help="manual epoch number (useful on restarts)") parser.add_argument('--train-batch', default=32, type=int, help="train batch size") parser.add_argument('--test-batch', default=5, type=int, help="test batch size (number of tracklets)") parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float, help="initial learning rate") parser.add_argument('--stepsize', default=[300, 400], nargs='+', type=int, help="stepsize to decay learning rate") parser.add_argument('--gamma', default=0.1, type=float, help="learning rate decay") parser.add_argument('--weight-decay', default=5e-04, type=float, help="weight decay (default: 5e-04)") parser.add_argument('--margin', type=float, default=0.3, help="margin for triplet loss") parser.add_argument('--num-instances', type=int, default=4, help="number of instances per identity") parser.add_argument('--htri-only', action='store_true', default=False, help="if this is True, only htri loss is used in training") # Architecture parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.get_names()) parser.add_argument('--pool', type=str, default='avg', choices=['avg', 'max']) # Miscs parser.add_argument('--print-freq', type=int, default=10, help="print frequency") parser.add_argument('--seed', type=int, default=1, help="manual seed") parser.add_argument('--resume', type=str, default='', metavar='PATH') parser.add_argument('--load-weights', type=str, default='', help="load pretrained weights but ignores layers that don't match in size") parser.add_argument('--evaluate', action='store_true', help="evaluation only") parser.add_argument('--eval-step', type=int, default=-1, help="run evaluation for every N epochs (set to -1 to test after training)") parser.add_argument('--start-eval', type=int, default=0, help="start to evaluate after specific epoch") parser.add_argument('--save-dir', type=str, default='log') parser.add_argument('--use-cpu', action='store_true', help="use cpu") parser.add_argument('--gpu-devices', default='0', type=str, help='gpu device ids for CUDA_VISIBLE_DEVICES') parser.add_argument('--vis-ranked-res', action='store_true', help="visualize ranked results, only available in evaluation mode (default: False)") args = parser.parse_args() def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False if not args.evaluate: sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt')) else: sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_vidreid_dataset(root=args.root, name=args.dataset) transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) pin_memory = True if use_gpu else False # decompose tracklets into images for image-based training new_train = [] for img_paths, pid, camid in dataset.train: for img_path in img_paths: new_train.append((img_path, pid, camid)) trainloader = DataLoader( ImageDataset(new_train, transform=transform_train), sampler=RandomIdentitySampler(new_train, num_instances=args.num_instances), batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryloader = DataLoader( VideoDataset(dataset.query, seq_len=args.seq_len, sample='evenly', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( VideoDataset(dataset.gallery, seq_len=args.seq_len, sample='evenly', transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent', 'htri'}) print("Model size: {:.3f} M".format(count_num_param(model))) criterion_xent = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu) criterion_htri = TripletLoss(margin=args.margin) optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma) if args.load_weights: # load pretrained weights but ignore layers that don't match in size if check_isfile(args.load_weights): checkpoint = torch.load(args.load_weights) pretrain_dict = checkpoint['state_dict'] model_dict = model.state_dict() pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()} model_dict.update(pretrain_dict) model.load_state_dict(model_dict) print("Loaded pretrained weights from '{}'".format(args.load_weights)) if args.resume: if check_isfile(args.resume): checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['state_dict']) args.start_epoch = checkpoint['epoch'] rank1 = checkpoint['rank1'] print("Loaded checkpoint from '{}'".format(args.resume)) print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, rank1)) if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print("Evaluate only") distmat = test(model, queryloader, galleryloader, use_gpu, return_distmat=True) if args.vis_ranked_res: visualize_ranked_results( distmat, dataset, save_dir=osp.join(args.save_dir, 'ranked_results'), topk=20, ) return start_time = time.time() train_time = 0 best_rank1 = -np.inf best_epoch = 0 print("==> Start training") for epoch in range(args.start_epoch, args.max_epoch): start_train_time = time.time() train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu) train_time += round(time.time() - start_train_time) scheduler.step() if (epoch + 1) > args.start_eval and args.eval_step > 0 and (epoch + 1) % args.eval_step == 0 or (epoch + 1) == args.max_epoch: print("==> Test") rank1 = test(model, queryloader, galleryloader, args.pool, use_gpu) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 best_epoch = epoch + 1 if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint({ 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar')) print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch)) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) train_time = str(datetime.timedelta(seconds=train_time)) print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time)) def train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu): losses = AverageMeter() batch_time = AverageMeter() data_time = AverageMeter() model.train() end = time.time() for batch_idx, (imgs, pids, _) in enumerate(trainloader): data_time.update(time.time() - end) if use_gpu: imgs, pids = imgs.cuda(), pids.cuda() outputs, features = model(imgs) if args.htri_only: # only use hard triplet loss to train the network loss = criterion_htri(features, pids) else: # combine hard triplet loss with cross entropy loss xent_loss = criterion_xent(outputs, pids) htri_loss = criterion_htri(features, pids) loss = xent_loss + htri_loss optimizer.zero_grad() loss.backward() optimizer.step() batch_time.update(time.time() - end) losses.update(loss.item(), pids.size(0)) if (batch_idx + 1) % args.print_freq == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.4f} ({data_time.avg:.4f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format( epoch + 1, batch_idx + 1, len(trainloader), batch_time=batch_time, data_time=data_time, loss=losses)) end = time.time() def test(model, queryloader, galleryloader, pool, use_gpu, ranks=[1, 5, 10, 20], return_distmat=False): batch_time = AverageMeter() model.eval() with torch.no_grad(): qf, q_pids, q_camids = [], [], [] for batch_idx, (imgs, pids, camids) in enumerate(queryloader): if use_gpu: imgs = imgs.cuda() b, s, c, h, w = imgs.size() imgs = imgs.view(b*s, c, h, w) end = time.time() features = model(imgs) batch_time.update(time.time() - end) features = features.view(b, s, -1) if pool == 'avg': features = torch.mean(features, 1) else: features, _ = torch.max(features, 1) features = features.data.cpu() qf.append(features) q_pids.extend(pids) q_camids.extend(camids) qf = torch.cat(qf, 0) q_pids = np.asarray(q_pids) q_camids = np.asarray(q_camids) print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1))) gf, g_pids, g_camids = [], [], [] for batch_idx, (imgs, pids, camids) in enumerate(galleryloader): if use_gpu: imgs = imgs.cuda() b, s, c, h, w = imgs.size() imgs = imgs.view(b*s, c, h, w) end = time.time() features = model(imgs) batch_time.update(time.time() - end) features = features.view(b, s, -1) if pool == 'avg': features = torch.mean(features, 1) else: features, _ = torch.max(features, 1) features = features.data.cpu() gf.append(features) g_pids.extend(pids) g_camids.extend(camids) gf = torch.cat(gf, 0) g_pids = np.asarray(g_pids) g_camids = np.asarray(g_camids) print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1))) print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch*args.seq_len)) m, n = qf.size(0), gf.size(0) distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \ torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t() distmat.addmm_(1, -2, qf, gf.t()) distmat = distmat.numpy() print("Computing CMC and mAP") cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids) print("Results ----------") print("mAP: {:.1%}".format(mAP)) print("CMC curve") for r in ranks: print("Rank-{:<3}: {:.1%}".format(r, cmc[r-1])) print("------------------") if return_distmat: return distmat return cmc[0] if __name__ == '__main__': main()