computer-visioncross-domaindeep-learningdeep-neural-networksimage-retrievalmachine-learningmetric-learningperson-reidperson-reidentificationpytorchre-ranking
|
||
---|---|---|
docs | ||
scripts | ||
torchreid | ||
.gitignore | ||
LICENSE | ||
README.rst | ||
environment.yml | ||
requirements.txt | ||
setup.py |
README.rst
Torchreid =========== Torchreid is a library built on `PyTorch <https://pytorch.org/>`_ for deep-learning person re-identification. It features: - multi-GPU training - support both image- and video-reid - end-to-end training and evaluation - incredibly easy preparation of reid datasets - multi-dataset training - cross-dataset evaluation - standard protocol used by most research papers - highly extensible (easy to add models, datasets, training methods, etc.) - implementations of state-of-the-art deep reid models - access to pretrained reid models - advanced training techniques - visualization of ranking results Documentation: https://kaiyangzhou.github.io/deep-person-reid/. News ------ - 06-05-2019: We released a tech report on `arxiv <https://arxiv.org/abs/1905.00953>`_. Code and models will be released. - 24-03-2019: `Torchreid documentation <https://kaiyangzhou.github.io/deep-person-reid/>`_ is out! Installation --------------- The code works with both python2 and python3. Option 1 ^^^^^^^^^^^^ 1. Install PyTorch and torchvision following the `official instructions <https://pytorch.org/>`_. 2. Clone ``deep-person-reid`` to your preferred directory .. code-block:: bash $ git clone https://github.com/KaiyangZhou/deep-person-reid.git 3. :code:`cd` to :code:`deep-person-reid` and install dependencies .. code-block:: bash $ cd deep-person-reid/ $ pip install -r requirements.txt 4. Install ``torchreid`` .. code-block:: bash $ python setup.py install # or python3 $ # If you wanna modify the source code without $ # the need to rebuild it, you can do $ # python setup.py develop Option 2 (with conda) ^^^^^^^^^^^^^^^^^^^^^^^^ We also provide an environment.yml file for easy setup with conda. 1. Clone ``deep-person-reid`` to your preferred directory .. code-block:: bash $ git clone https://github.com/KaiyangZhou/deep-person-reid.git 2. :code:`cd` to :code:`deep-person-reid` and create an environment (named ``torchreid``) .. code-block:: bash $ cd deep-person-reid/ $ conda env create -f environment.yml In doing so, the dependencies will be automatically installed. 3. Install PyTorch and torchvision (select the proper cuda version to suit your machine) .. code-block:: bash $ conda activate torchreid $ conda install pytorch torchvision cudatoolkit=9.0 -c pytorch 4. Install ``torchreid`` .. code-block:: bash $ python setup.py install $ # If you wanna modify the source code without $ # the need to rebuild it, you can do $ # python setup.py develop Get started: 30 seconds to Torchreid ------------------------------------- 1. Import ``torchreid`` .. code-block:: python import torchreid 2. Load data manager .. code-block:: python datamanager = torchreid.data.ImageDataManager( root='reid-data', sources='market1501', height=256, width=128, batch_size=32, market1501_500k=False ) 3 Build model, optimizer and lr_scheduler .. code-block:: python model = torchreid.models.build_model( name='resnet50', num_classes=datamanager.num_train_pids, loss='softmax', pretrained=True ) model = model.cuda() optimizer = torchreid.optim.build_optimizer( model, optim='adam', lr=0.0003 ) scheduler = torchreid.optim.build_lr_scheduler( optimizer, lr_scheduler='single_step', stepsize=20 ) 4. Build engine .. code-block:: python engine = torchreid.engine.ImageSoftmaxEngine( datamanager, model, optimizer=optimizer, scheduler=scheduler, label_smooth=True ) 5. Run training and test .. code-block:: python engine.run( save_dir='log/resnet50', max_epoch=60, eval_freq=10, print_freq=10, test_only=False ) A unified interface ----------------------- In "deep-person-reid/scripts/", we provide a unified interface including a default parser file ``default_parser.py`` and the main script ``main.py``. For example, to train an image reid model on Market1501 using softmax, you can do .. code-block:: bash python main.py \ --root path/to/reid-data \ --app image \ --loss softmax \ --label-smooth \ -s market1501 \ -a resnet50 \ --optim adam \ --lr 0.0003 \ --max-epoch 60 \ --stepsize 20 40 \ --batch-size 32 \ --save-dir log/resnet50-market-softmax \ --gpu-devices 0 Please refer to ``default_parser.py`` and ``main.py`` for more details. Datasets -------- Image-reid datasets ^^^^^^^^^^^^^^^^^^^^^ - `Market1501 <https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf>`_ - `CUHK03 <https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf>`_ - `DukeMTMC-reID <https://arxiv.org/abs/1701.07717>`_ - `MSMT17 <https://arxiv.org/abs/1711.08565>`_ - `VIPeR <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.7285&rep=rep1&type=pdf>`_ - `GRID <http://www.eecs.qmul.ac.uk/~txiang/publications/LoyXiangGong_cvpr_2009.pdf>`_ - `CUHK01 <http://www.ee.cuhk.edu.hk/~xgwang/papers/liZWaccv12.pdf>`_ - `SenseReID <http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Spindle_Net_Person_CVPR_2017_paper.pdf>`_ - `QMUL-iLIDS <http://www.eecs.qmul.ac.uk/~sgg/papers/ZhengGongXiang_BMVC09.pdf>`_ - `PRID <https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf>`_ Video-reid datasets ^^^^^^^^^^^^^^^^^^^^^^^ - `MARS <http://www.liangzheng.org/1320.pdf>`_ - `iLIDS-VID <https://www.eecs.qmul.ac.uk/~sgg/papers/WangEtAl_ECCV14.pdf>`_ - `PRID2011 <https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf>`_ - `DukeMTMC-VideoReID <http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Exploit_the_Unknown_CVPR_2018_paper.pdf>`_ Models ------- ImageNet classification models ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - `ResNet <https://arxiv.org/abs/1512.03385>`_ - `ResNeXt <https://arxiv.org/abs/1611.05431>`_ - `SENet <https://arxiv.org/abs/1709.01507>`_ - `DenseNet <https://arxiv.org/abs/1608.06993>`_ - `Inception-ResNet-V2 <https://arxiv.org/abs/1602.07261>`_ - `Inception-V4 <https://arxiv.org/abs/1602.07261>`_ - `Xception <https://arxiv.org/abs/1610.02357>`_ Lightweight models ^^^^^^^^^^^^^^^^^^^ - `NASNet <https://arxiv.org/abs/1707.07012>`_ - `MobileNetV2 <https://arxiv.org/abs/1801.04381>`_ - `ShuffleNet <https://arxiv.org/abs/1707.01083>`_ - `SqueezeNet <https://arxiv.org/abs/1602.07360>`_ ReID-specific models ^^^^^^^^^^^^^^^^^^^^^^ - `MuDeep <https://arxiv.org/abs/1709.05165>`_ - `ResNet-mid <https://arxiv.org/abs/1711.08106>`_ - `HACNN <https://arxiv.org/abs/1802.08122>`_ - `PCB <https://arxiv.org/abs/1711.09349>`_ - `MLFN <https://arxiv.org/abs/1803.09132>`_ Losses ------ - `Softmax (cross entropy loss with label smoothing) <https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf>`_ - `Triplet (hard example mining triplet loss) <https://arxiv.org/abs/1703.07737>`_ Citation --------- If you find this code useful to your research, please cite the following publication. .. code-block:: bash @article{zhou2019osnet, title={Omni-Scale Feature Learning for Person Re-Identification}, author={Kaiyang Zhou and Yongxin Yang and Andrea Cavallaro and Tao Xiang}, journal={arXiv preprint arXiv:1905.00953}, year={2019} }