deep-person-reid/torchreid/utils/torchtools.py

28 lines
940 B
Python

from __future__ import absolute_import
from __future__ import division
import torch
import torch.nn as nn
def adjust_learning_rate(optimizer, base_lr, epoch, stepsize, gamma=0.1):
# decay learning rate by 'gamma' for every 'stepsize'
lr = base_lr * (gamma ** (epoch // stepsize))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def set_bn_to_eval(m):
# 1. no update for running mean and var
# 2. scale and shift parameters are still trainable
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
m.eval()
def count_num_param(model):
num_param = sum(p.numel() for p in model.parameters()) / 1e+06
if hasattr(model, 'classifier') and isinstance(model.classifier, nn.Module):
# we ignore the classifier because it is unused at test time
num_param -= sum(p.numel() for p in model.classifier.parameters()) / 1e+06
return num_param