147 lines
5.0 KiB
Python
147 lines
5.0 KiB
Python
from __future__ import absolute_import
|
|
import sys
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
"""
|
|
Shorthands for loss:
|
|
- CrossEntropyLabelSmooth: xent
|
|
- TripletLoss: htri
|
|
- CenterLoss: cent
|
|
"""
|
|
__all__ = ['DeepSupervision', 'CrossEntropyLabelSmooth', 'TripletLoss', 'CenterLoss']
|
|
|
|
def DeepSupervision(criterion, xs, y):
|
|
"""
|
|
Args:
|
|
criterion: loss function
|
|
xs: tuple of inputs
|
|
y: ground truth
|
|
"""
|
|
loss = 0.
|
|
for x in xs:
|
|
loss += criterion(x, y)
|
|
return loss
|
|
|
|
class CrossEntropyLabelSmooth(nn.Module):
|
|
"""Cross entropy loss with label smoothing regularizer.
|
|
|
|
Reference:
|
|
Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
|
|
Equation: y = (1 - epsilon) * y + epsilon / K.
|
|
|
|
Args:
|
|
num_classes (int): number of classes.
|
|
epsilon (float): weight.
|
|
"""
|
|
def __init__(self, num_classes, epsilon=0.1, use_gpu=True):
|
|
super(CrossEntropyLabelSmooth, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.epsilon = epsilon
|
|
self.use_gpu = use_gpu
|
|
self.logsoftmax = nn.LogSoftmax(dim=1)
|
|
|
|
def forward(self, inputs, targets):
|
|
"""
|
|
Args:
|
|
inputs: prediction matrix (before softmax) with shape (batch_size, num_classes)
|
|
targets: ground truth labels with shape (num_classes)
|
|
"""
|
|
log_probs = self.logsoftmax(inputs)
|
|
targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).data.cpu(), 1)
|
|
if self.use_gpu: targets = targets.cuda()
|
|
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
|
|
loss = (- targets * log_probs).mean(0).sum()
|
|
return loss
|
|
|
|
class TripletLoss(nn.Module):
|
|
"""Triplet loss with hard positive/negative mining.
|
|
|
|
Reference:
|
|
Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.
|
|
|
|
Code imported from https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py.
|
|
|
|
Args:
|
|
margin (float): margin for triplet.
|
|
"""
|
|
def __init__(self, margin=0.3):
|
|
super(TripletLoss, self).__init__()
|
|
self.margin = margin
|
|
self.ranking_loss = nn.MarginRankingLoss(margin=margin)
|
|
|
|
def forward(self, inputs, targets):
|
|
"""
|
|
Args:
|
|
inputs: feature matrix with shape (batch_size, feat_dim)
|
|
targets: ground truth labels with shape (num_classes)
|
|
"""
|
|
n = inputs.size(0)
|
|
# Compute pairwise distance, replace by the official when merged
|
|
dist = torch.pow(inputs, 2).sum(dim=1, keepdim=True).expand(n, n)
|
|
dist = dist + dist.t()
|
|
dist.addmm_(1, -2, inputs, inputs.t())
|
|
dist = dist.clamp(min=1e-12).sqrt() # for numerical stability
|
|
# For each anchor, find the hardest positive and negative
|
|
mask = targets.expand(n, n).eq(targets.expand(n, n).t())
|
|
dist_ap, dist_an = [], []
|
|
for i in range(n):
|
|
dist_ap.append(dist[i][mask[i]].max().unsqueeze(0))
|
|
dist_an.append(dist[i][mask[i] == 0].min().unsqueeze(0))
|
|
dist_ap = torch.cat(dist_ap)
|
|
dist_an = torch.cat(dist_an)
|
|
# Compute ranking hinge loss
|
|
y = torch.ones_like(dist_an)
|
|
loss = self.ranking_loss(dist_an, dist_ap, y)
|
|
return loss
|
|
|
|
class CenterLoss(nn.Module):
|
|
"""Center loss.
|
|
|
|
Reference:
|
|
Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
|
|
|
|
Args:
|
|
num_classes (int): number of classes.
|
|
feat_dim (int): feature dimension.
|
|
"""
|
|
def __init__(self, num_classes=10, feat_dim=2, use_gpu=True):
|
|
super(CenterLoss, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.feat_dim = feat_dim
|
|
self.use_gpu = use_gpu
|
|
|
|
if self.use_gpu:
|
|
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim).cuda())
|
|
else:
|
|
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim))
|
|
|
|
def forward(self, x, labels):
|
|
"""
|
|
Args:
|
|
x: feature matrix with shape (batch_size, feat_dim).
|
|
labels: ground truth labels with shape (num_classes).
|
|
"""
|
|
batch_size = x.size(0)
|
|
distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_classes) + \
|
|
torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_classes, batch_size).t()
|
|
distmat.addmm_(1, -2, x, self.centers.t())
|
|
|
|
classes = torch.arange(self.num_classes).long()
|
|
if self.use_gpu: classes = classes.cuda()
|
|
labels = labels.unsqueeze(1).expand(batch_size, self.num_classes)
|
|
mask = labels.eq(classes.expand(batch_size, self.num_classes))
|
|
|
|
dist = []
|
|
for i in range(batch_size):
|
|
value = distmat[i][mask[i]]
|
|
value = value.clamp(min=1e-12, max=1e+12) # for numerical stability
|
|
dist.append(value)
|
|
dist = torch.cat(dist)
|
|
loss = dist.mean()
|
|
|
|
return loss
|
|
|
|
if __name__ == '__main__':
|
|
pass |